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海の波には，風が発生原因である波浪（waves），強い海底地震が発生原因で周期

が数分以上の津波（a tsunami），台風による強風と低気圧が原因で周期が数時間の

高潮（a storm surge），天体の運行が原因で周期が半日と 1 日の潮汐波（tidal

waves）などがあるが，ここでは波浪の統計的性質と発生理論，および予測法につい

て説明する．なお，波浪は，周期が 0.1 秒以下のさざ波（ripples），周期が 0.1～

30 秒以下の風波（wind waves）とうねり（swells），そして，長周期重力波（long-

period gravity waves, infragravity waves）と呼ばれる周期が 30 秒～数分の成分

波から成る．

11..11 波波浪浪のの統統計計的的性性質質

11)) 規規則則波波のの基基本本的的表表現現とと合合成成

((11)) 規規則則波波のの基基本本的的表表現現

図図--11..11に示す規則波の場合，山から山までの長さを波長 (L, wavelength, a wave-

length），山から谷までの水面高を波高（H，wave height, a wave height）と定義

し，静水面からの水面上昇高（水面高）ηを次の余弦関数で表すことが出来る．
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ここに，xは水平座標であり，κ=2π / Lは波数（a wave number）と呼ばれる．

さらに，図図--11..11において，波が通過して次の波が来るまでの時間，すなわち，一

波長が通過する時間を周期（T）と定義し，x方向に進行する波を次式で表すことが

出来る．
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ここに，tは時間であり，ω=2π / Tは角周波数（an angular frequency）または角

振動数，c=L/T=ω/κは波の伝播速度（wave velocity）または波速（wave celerity）

と呼ばれる．

図図--11..11 波形の定義
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((22)) 規規則則波波のの合合成成

簡単のために波数を無視して，波高 H1で周期 T1の規則波と，波高 H2で周期 T2

の規則波の合成を考える．この場合の静水面からの水面上昇高（水面高）ηは次式

で表される．
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さらに，加法定理を用いると，式（1.1.3）は次式の様になる．

 
 

 

cos cos sin sin cos cos sin sin

cos cos sin sin cos cos sin sin

2 cos cos 2 cos( ) cos cos

(2 2 ) cos cos 2 cos( )

H T T T T T T T T

H T T T T T T T T

H T T H T T T T

H H T T H T T

         

        

       

      

   

   

   

   

  

  

  

そして，式（1.1.5）に式（1.1.4）を代入し直すと，式（1.1.6）を得る．
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波高 4.0m で周期 12.0 s の規則波と，波高 2.0m で周期 8.0 s の規則波の合成結果

を図図--11..22に，波高 4.0 m で周期 12.0 s の規則波と，波高 2.0 m で周期 10.9 s の規則

波の合成結果を図図--11..33に示す．規則波を合成させると，図図--11..22に示されるように不

規則性を増すが，周期の差が小さい規則波を合成させると，式（1.1.6）の右辺一番

目の余弦関数の周期  1 2 2 12 ( )TT T T が長周期になるため，図図--11..33に示されるようにビ

ート波（唸っている波）になる．

(1.1.3)

図図--11..22 合成波の例（周期 12.0 s と周期 8.0 s の 2つの規則波の場合）

図図--11..33 合成波の例（周期 12.0 s と周期 10.9 s の 2つの規則波の場合）
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22)) 不不規規則則波波とと波波群群性性

実際の海の波浪は規則波でなく，図図--11..44に示すような不規則波であり，小さな波

から徐々に大きな波になって，再び小さな波に戻る 10 波前後の連なりを有している

のが普通である．この性質を波群性（wave groupiness）と呼び，港湾や浮遊構造物

の共振，傾斜堤の捨石・ブロックの安定性，汀線付近の平均水面変動や波の打上げ・

越波などの問題に影響を及ぼすことが分っている．

波の数え方は，規則波ならば，山から山，または，谷から谷を一波と定義して問

題無いが，実際の波浪の場合は，図図--11..44の左端から 5  6 番目の二山の様に，この

定義では，水面高 ηが一波の中で静水面（図図--11..44の水面高 0 m の平面）を横切らな

い波が出来るため，水面高 ηが静水面を横切って上昇し，再び静水面を横切って上

昇するまでを一波と定義するゼロアップ・クロス法か，水面高 ηが静水面を横切っ

て降下し，再び静水面を横切って降下するまでを一波と定義するゼロダウン・クロ

ス法を用いて行われる．国際的には，ゼロダウン・クロス法も多用されているが，

我が国では，ゼロアップ・クロス法が主流である．

この不規則波の取扱いには，波別解析法とスペクトル解析法の 2つがある．

33)) 波波別別解解析析法法にによよるる取取扱扱いい

波の定常性を確保するため，20 分間程度の連続記録（波数で 200 波程度）を用い

て，１波ごとの波高や周期などの出現確率の分布を扱う方法を波別解析法と呼び，

非線形性の強い波浪にも適応できる．

水面高 ηの出現確率密度の分布は，平均値が 0で，分散が 1の場合の正規分布（a

normal distribution, Gaussian distribution）に従い，式（1.1.7）で表される．

 
2

1 1exp
22
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

 

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図図--11..44 海の波浪の模擬波形とゼロアップ・クロス法による波の数え方
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ここに，ση は水面高 ηの標準偏差で，データ数 nを用いて式（1.1.8）で定義される．

2

1

n

i
i

n


 



そして，Longuet-Higgins［1］によると，波高 Hの出現確率密度の分布は，図図--11..55

に例を示すレイリー分布 (Rayleigh distribution) に従い，式（1.1.9) で表される．

2 2

2 2

1( ) exp , exp
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H H H H H
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さらに，ある波高 Hより大きな波高が出現する確率（超過発生確率）は，式（1.1.9)

を Hから∞にかけて積分すればよいので，式（1.1.10）で求まる．
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8 4H

H H
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ここに，H は次式で表される平均波高である．
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((11)) 11//33 最最大大波波とと有有義義波波

図図--11..55に示す様に，測定波 n個の中から，波高の大きい順に n/3 個を選んで，こ

れらの波高と周期を各々算術平均した値を 1/3 最大波高（the highest one-third

読者にとって分かりにくい次の数式表現について，ここで解説しておく．

 expy A B  (a.1)

この式は，ネイピア数（ 2.71828182e   ）を用いた次の式と同じである．
By A e  (a.2)

ここで，指数 Bが複雑な式の場合，式（a.2）の表現では，指数部が読みにくく

なるため，exp{ B }の表現を採用する．

図図--11..55 波高のレイリー分布の例と有義波高の説明
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wave height; H1/3）と 1/3 最大周期（the highest one-third wave period; T1/3）と

呼び，この波を 1/3 最大波（the highest one-third wave）と呼ぶ．これらの値は，

人間が目視観測で得た測定値の平均にほぼ等しいこと（人間が目視観測する場合，

半分以上の小さな波を見逃していることを意味する）から，各々有義波高（the

significant wave height; Hs），有義周期（the significant wave period; Ts），お

よび，有義波（the significant wave）とも呼んでおり，実際の波浪に対して単に

波高，周期と呼ぶときは，有義波のそれらを指していて，各種検討で多用されてい

る．

有義波高と平均波高の関係は，レイリー分布の仮定の下，次の様になる．

1/3 1.597 1.60sH H H H     

((22)) 11//1100 最最大大波波

波高の大きい順に n/10 個を選んで，これらの波高と周期を各々算術平均した値

を 1/10 最大波高（H1/10）と 1/10 最大周期（T1/10）と呼び，この波を 1/10 最大波と

呼ぶ．1/10 最大波高と有義波高，および，平均波高との関係は，レイリー分布の仮

定の下，次の様になる．

1/10 1.271 2.031sH H H   

((33)) 最最高高波波

波高が最大の波を最高波（the highest wave）と呼び（最大波とも呼ばれている

が，1/10 最大波などと混同されるので，避けた方が良い），これの波高と周期を各々

最高波高 (Hmax)，最高周期 (Tmax)と呼び，港湾構造物や海洋構造物の設計に用いる．

最高波高と有義波高の関係は，これらの比の度数分布の最多値として式（1.1.14)，

度数分布の平均値として式（1.1.15）の様になる．

最多値の場合：  max

1 /3

0.706 ln
H n
H
 

平均値の場合：  
 

max

1/ 3

0.706 ln
2 ln

H rn
H n

   
  

 

ここに，r はオイラーの定数（= 0.5772, Euler s constant）である．

式（1.1.14）や式（1.1.15）から，港湾構造物の場合は，波数 nとして 600 個相当

を採用している．

港湾構造物の場合： max 1/31.8H H 

さらに，海洋構造物の場合は，波数 nとして 3,000 個相当を採用している．

海洋構造物の場合： max 1/32.0H H 
max 1/32.0H H 

(1.1.12)

(1.1.13)

(1.1.14)

(1.1.15)

(1.1.16)

(1.1.17)
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wave height; H1/3）と 1/3 最大周期（the highest one-third wave period; T1/3）と

呼び，この波を 1/3 最大波（the highest one-third wave）と呼ぶ．これらの値は，

人間が目視観測で得た測定値の平均にほぼ等しいこと（人間が目視観測する場合，

半分以上の小さな波を見逃していることを意味する）から，各々有義波高（the

significant wave height; Hs），有義周期（the significant wave period; Ts），お

よび，有義波（the significant wave）とも呼んでおり，実際の波浪に対して単に

波高，周期と呼ぶときは，有義波のそれらを指していて，各種検討で多用されてい

る．

有義波高と平均波高の関係は，レイリー分布の仮定の下，次の様になる．

1/3 1.597 1.60sH H H H     

((22)) 11//1100 最最大大波波

波高の大きい順に n/10 個を選んで，これらの波高と周期を各々算術平均した値

を 1/10 最大波高（H1/10）と 1/10 最大周期（T1/10）と呼び，この波を 1/10 最大波と

呼ぶ．1/10 最大波高と有義波高，および，平均波高との関係は，レイリー分布の仮
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1/10 1.271 2.031sH H H   

((33)) 最最高高波波
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度数分布の平均値として式（1.1.15）の様になる．

最多値の場合：  max

1 /3

0.706 ln
H n
H
 

平均値の場合：  
 

max

1/ 3

0.706 ln
2 ln

H rn
H n

   
  

 

ここに，r はオイラーの定数（= 0.5772, Euler s constant）である．

式（1.1.14）や式（1.1.15）から，港湾構造物の場合は，波数 nとして 600 個相当

を採用している．

港湾構造物の場合： max 1/31.8H H 

さらに，海洋構造物の場合は，波数 nとして 3,000 個相当を採用している．

海洋構造物の場合： max 1/32.0H H 
max 1/32.0H H 

(1.1.12)

(1.1.13)

(1.1.14)

(1.1.15)

(1.1.16)

(1.1.17)

((44)) 平平均均波波

全測定波を算術平均した平均波高（H ）と平均周期（T ）は式（1.1.18）で求め

られる．

また，全測定波高の二乗値を算術平均した値の平方根は，波高の二乗平均平方根

(Hrms）と呼ばれ，式（1.1.19）で定義される．波浪エネルギーは波高の二乗に比例

することから，波浪エネルギーに注目する検討の場合に用いられる．

 
 

1 / 2
2

2 0

0

48rms

H p H dH
H H H

p H dH
 





  
    

  




((55)) 周周期期のの分分布布

Bretschne    [2] によると，風波の周期 Tの出現確率密度の分布は，式（1.1.20)

で表される．

 
43

42.7 exp 0.675T T
p T

TT

      
   

しかし，風波とうねりの合成など，ピークが 2つある周期分布が顕著になる場合も

あり，波高の場合の様な一般形は無い．それゆえ，実測データの解析から，次の様

に見なされる．

 max 1/10 1/ 3 1.1 1.2T T T T   

44)) ススペペククトトルル解解析析法法にによよるる取取扱扱いい

波高（4 m～0.4 m）と周期（12 s～3 s）から成る規則波（成分波１～5）を重ね合

わせした図図--11..66に示す例のように，規則波を合成することで，波群性を有する不規

則波を作り出せる．この様に，不規則波を様々な波高と周期を持った成分波の合成

と考え，光のスペクトルと類似の概念から，各成分波が持つエネルギーの周波数上

の分布で不規則波を表す方法を，スペクトル解析法 (the spectral ana     method）

と呼び，線形波に適用出来る．

((11)) 周周波波数数ススペペククトトルル

海の波浪を多様な波高と周期を有する成分波（規則波）の重ね合せで考え，各々

の成分波の持つエネルギーを周波数の関数として表したものを周波数スペクトル（a

frequency spectrum）と呼ぶ．

i i
1 1,

n n

i i

H T
H Tn n

  
 

  
(1.1.18)

(1.1.19)

(1.1.20)

(1.1.21)
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不規則波の水面高 ηを式（1.1.22）に示す無数の規則波の合成で表す．

 
1

cos 2i i i
i
a f t  





 

ここに，ai，fi，εiは i番目の成分波の振幅（=H / 2），周波数，および，位相であり，

各成分波の振幅は小さく，成分波間の相互干渉は無く，位相はランダムに分布して

いると仮定する．

そして，第 2.1 節で解説する微小振幅波理論から，i番目の成分波（規則波）の単

位面積当りの全エネルギー E(fi) [kg-m/s2×m/m2 =N×m/m2］は式（1.1.23）で

表される．

  2 21 1
8 2i i iE f gH ga  

それゆえ，周波数 fから f + df 間の成分波の全エネルギーの程度を次式で表す．

 21
2

f d f

i
i f

a S f d f






ここに，S ( f ) は，単位 [m2 ･ s] で表された，周波数 f に対応した単位周波数当

りの波エネルギーの程度と言え，周波数エネルギースペク  密度関数（a frequen-

cy energy spectral density function），略して周波数スペク ルと呼ぶ．

2
1
0
-1
-2

2
1
0
-1
-2

2
1
0
-1
-2

2
1
0
-1
-2

2
1
0
-1
-2

4
3
2
1
0
-1
-2
-3
-4
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0 30 60 90 120 150 180

0 30 60 90 120 150 180

0 30 60 90 120 150 180

0 30 60 90 120 150 180
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経過時間（s）

経過時間（s）

経過時間（s）

経過時間（s）

経過時間（s）

経過時間（s）

図図--11..66 規則波の合成による不規則波の表現

(1.1.22)

(1.1.23)

(1.1.24)
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(1.1.22)

(1.1.23)

(1.1.24)

((22)) 周周波波数数ススペペククトトルルとと代代表表波波のの関関係係

不規則波の平均エネルギー E は，水面高 ηの経時変化   を用いて，式（1.1.25)

から求められる．

ここに，ρは海水の密度，gは重力加速度，Ttermは水面高の観測時間，σηは水面高の

標準偏差である．

式（1.1.23)，式（1.1.24）と式（1.1.25）を比較すれば，波の周波数スペクトル

を全周波数に渡って積分し，ρgを掛けると，式（1.1.25）に等しくなることが分か

る．それゆえ，次式を得る．

 2 2

0
S f df 


  

すなわち，周波数スペクトルが分かれば，式（1.1.26）から水面高の標準偏差が

求まり，式（1.1.11）～式（1.1.17）および式（1.1.19）から各種代表波の波高を求

められる．

さらに，平均周波数 f と平均周期Tは次の様に定義される．

 
 

1/ 2
2

0 2

0
0

f S f df mf
mS f df





 
  
 
  




0

2

mT
m



ここに， 0m は fに対する 0次モーメント であり， 2m は fに対する

2次モーメント である．

ただし，波高データから求まる平均周期は，式（1.1.28）から求まる値の 1.2 倍に

なる．

また，波高がレイリー分布に従うならば，式（1.1.11），式（1.1.12），および，

式（1.1.26）から，次の関係式を得る．周波数スペクトルの分布が求まれば，本式

から有義波高を求められる．

ここで，ηrms は水面高の二乗平均平方根を意味する．

 0
( )S f df


 

 2

0
( )f S f df


 

2
1/ 3 0

4.004 ( ) 4.004 4.004 rmsH S f df  


  

2
2 20

termT

term

dt
E g g g

T 


      

(1.1.29)

(1.1.25)

(1.1.26)

(1.1.27)

(1.1.28)
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((33)) 代代表表的的なな周周波波数数ススペペククトトルル

風が吹き続けると，風からエネルギーが水面近くの水塊に供給され，さざ波から

波高と周期の大きな波へ発達する．この波の発達に係わる重要な物理量は，水面で

のせん断力の大きさを支配する風速以外に，吹き続ける時間と距離が長くなるほど

波の発達に繋がることから，吹送時間（duration time）と吹送距離（fetch）であ

る．

ある吹送距離で，風波が定常状態まで発達するために必要な時間を最小吹送時間

と呼ぶが，これ以降では，最小吹送時間に達しているものとして解説する．

(a) 光易Ⅱ型周波数スペクトル

光易［3］は実験と実測データを用いて，有限吹送距離での風波の周波数スペクト

ル[m2 s］を次の様に表した．これを光易Ⅱ型周波数スペクトル (the Mitsuyasu Type

Ⅱ frequency spectrum）と呼ぶ．

 
0.312 1.32 4

2 5
2 20.000858 exp 1.25 u fgF gFS f g f

u u g

  

 

 

               
      

ここに，gは重力加速度，fは周波数，Fは吹送距離，uは摩擦速度で式（1.1.31）
から求まる．

2 2
210 10

10 10
a

a a

r U
u r U

    

ここに，τ は風による水面でのせん断力，
a は

空気の密度, 10r
 は摩擦係数 (U10 が 15 m/s 以上

の場合， 10r
        ）U10 は海面上 10 m の平

均風速である．

光易Ⅱ型周波数スペクトルの分布例を図図--11..77

に示す．吹送距離が長くなるほど，波のエネル

ギーが大きくなる（波高が大きくなる）と共に，

エネルギーがピークになる周波数（ピーク周波

数と呼ぶ）が小さくなる．すなわち ピークの

周期が長くなる．

(b) ブレットシュナイダー・光易周波数スペクトル

光易 [3］の式（1.1.30）を，ピーク周波数 fpと有義周期との関係式（1.1.32)，

および，前出の式（1.1.29）を用いて，設定が容易な有義波高と有義周期から周波

数スペクトル［m2 s］を求められるように書き直したのが，式（1.1.33）である．

図図--11..77 光易Ⅱ型周波数スペク
トルの例
(10 m 上空の風速が 15 m/s の場合）
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式（1.1.33）は，Bretschneider [4］が提案した有限吹送距離での風波の周波数ス

ペクトルの式と一致することから，ブレットシュナイダー・光易周波数スペクトル

（the Bretschneider-Mitsuyasu frequency spectrum）と呼ばれ，有義波高 7 m，有

義周期 14 s の場合の例を図図--11..88に示す．

(c) ピアソン・モスコビッチ周波数スペクトル

風波の波高と周期は，一定風速の下，吹送距離の増加と共に大きくなるが，やが
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線形伝達によって，風から供給されるエネルギーとの間でエネルギー平衡状態にな
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ここに，U19.5は海面上 19.5 m 上空の平均風速であり，式（1.1.35）を用いて求めら

れる．
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図図--11..88 ブレットシュナイダー・光易周波数スペクトルの例
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ここに，zは海面上の高さ［m］，U10は z =10 m での風速，r10 は摩擦係数（U10が 15

m/s 以上の場合， である．

式(1.1.34)は，ピアソン・モスコビッチ周波数スペクトル（          -         

frequency spectrum）と呼ばれ，海面上 19.5 m 上空の風速が 21 m/s の場合の例を

図図--11..99に示す．

(d) 合田による修正ジョンスワプ周波数スペクトル

Hasselmann et al.  6］は，北海で観測された波浪データを用いて，JONSWAP 周波

数スペクトルと呼ばれる風波に対するスペクトル密度関数を提案したが，合田［7]

は不規則波数値シミュレーション結果を踏まえて，設定が容易な有義波高と有義周

期で周波数スペクトル [m2 s］を表せる式（1.1.36）を提案した．本式は，式中の

スペクトルの先鋭度を表す指標 γを選ぶことで，広範囲のスペクトル形状に使用で

き，十分に発達した風波に対しては γ= 1を，数千km伝播したうねりに対しては γ=10

を選べば良い．

 

  
1

42 4 5
1 / 3

0 .06238(1.094 0.01915 ln )
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      

ここに，α は式（1.1.37）から求まる指数，Tpは式（1.1.38）から求まるピーク周

期，βは式（1.1.39）で設定できる係数で，fp はピーク周波数（Tpの逆数）である．
2

2

( 1)
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2
pT f

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図図--11..99 ピアソン・モスコビッチ周波数スペクトルの例
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式(1.1.36)は，修正ジョンスワプ周波数スペクトル（the Modified JONSWAP fre-

quency spectrum）と呼ばれ，有義波高 7 m，有義周期 14 s の場合の例を図図--11..1100に

示す．

(e) 二山ピークの周波数スペクトル

風波とうねりが共存するため，ピークが二つある周波数スペクトルになる場合が

ある．この場合は，一山ピークの広範囲のスペクトル形状に適用できる修正ジョン

スワプ周波数スペクトルや，Huang et al. [7］が提案したワロップス周波数スペク

トル（the Wallops frequency spectrum）を用いて，風波とうねりの周波数スペク 

ルを各々求め，線形的に重ね合せることにより表現出来る．実施例には種本ら［8］

や Ochi and Hubble［9］の研究がある．

((44)) 方方向向ススペペククトトルル

実際の波浪は，波高と周期だけでなく，波向についても異なる成分波を合成した

ものになる．それゆえ，波浪の持つエネルギー（波高の二乗に比例する）を周波数

図図--11..1100 修正ジョンスワプ周波数スペクトルの例
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と波向の関数として表したものを波浪の方向スペクトル（a directional spectrum）

と呼ぶ．

この方向   ト  ，式（1.1.40）に示す様に，前出の周波数   ト S ( f）

と波向角 θ方向の分布状況を表す方向分布関数 G ( f ,θ）の積で定義できる．

     , ,S f S f G f  

方向分布関数については，Arthur［10］など幾つかの研究が有るが，ここでは

Longuet-Higgins et al.［11］が提案し，光易 [12］が補強した方向分布関数を紹

介する．

方向分布関数は次元を持たず，式（1.1.41）を満足するように決定する必要があ

り，Longuet-Higgins et al.［11］が，外洋で観測したデータから，式（1.1.42）

を提案した．

ここに，Sはエネルギー方向分布の集中度を表すパラメータ，G0は G ( f ,θ )を正規

化するために式（1.1.43）で定義される係数であり，θmin～θmaxが - π～ + πの場合

は，式（1.1.44）になる．

max

min

1
2

0 cos
2

SG d




 


     
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  
 

2

2 1
0

11 2
2 1

S S
G

S
  


 

ここに，Γ( )はガンマ関数である．

そして，光易ら［12］は，実測データを用いて式（1.1.42）の妥当性を確認する

と共に，エネルギー方向分布の集中度パラメータ Sを求めるために次式を提案した．

 
 

6.7 4

2.7

14     

14           

p p

p

f f f f
S

f f f


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
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 



 

ここに， は式（1.1.46）で定義される無次元周波数， pf は式（1.1.47）で定義

される無次元ピーク周波数である．
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2

0
, 1G f d


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  2
0, cos

2
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(1.1.41)

(1.1.42)

(1.1.43)

(1.1.44)

(1.1.45)
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ここに，U10は海面上 10 m の平均風速，Fは吹送距離である．

さらに，合田・鈴木［13］は，エネルギー方向分布の集中度パラメータ Sを，周

波数，ピーク周波数，および，光易らの実測データから求められた式（1.1.48）で

定義される集中度パラメータの最大値 Smaxで表す式（1.1.49）を提案した．ここで，

ピーク周波数 fpは，有義周期を用いて式（1.1.50）から求められる．

式（1.1.42），式（1.1.44），および，式（1.1.48）～式（1.1.50）から求まる方向

分布関数を，光易型方向分布関数と呼び，有義波高 7 m，有義周期 14 s で，Smaxが

25 の場合の例を図図--11..1111に示す．

式（1.1.48）の精度は十分に確認されておらず，対象波に対する適切な U10の設

定も簡単でないことから，合田は，集中度パラメータの最大値 Smaxとして， 次の値

を使うことを推薦している．

❖風波の場合 －－－－－－－－－－ 10

❖減衰距離の短いうねりの場合（波形勾配が比較的大きい）－－ 25

❖減衰距離の長いうねりの場合（波形勾配が比較的小さい）－－ 75

図図--11..1111 光易型方向分布関数の例
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また，合田・鈴木が求めた集中度パラメータの最大値と波形勾配との関係を図図--

11..1122に，同最大値と相対水深との関係を図図--11..1133（図中の αpoは沖側の等深線に対す

る不規則波の卓越入射角であり (Smax)o は沖側の等深線での集中度パラメータの最

大値である）に示す．

図図--11..1122 方向集中度パラメータと波形勾配との関係（合田・鈴木 [13] より）

 図中のαpoは沖側の等深線に対する不規則波の卓越入射角であり，(Smax)oは
沖側の等深線での集中度パラメータの最大値である．

図図--11..1133 方向集中度パラメータと相対水深との関係（合田・鈴木 [13］より）
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11)) 波波浪浪のの発発生生理理論論のの基基礎礎

乱流状態である風の圧力変動よって微小な海水面変動が発生し，これの伝播速度

が風の圧力変動の移動速度と一致する場合に波となり，風からのエネルギー供給が

続くと，波はさざ波から大きな風波へ発達するが，さらに発達すると波峰付近から

崩れ始め，エネルギーの一部を失うものの，風からの供給エネルギーと砕波による

損失エネルギーが釣合うようになり，平衡状態に達する．そして，波が風域から出

るか，風が弱まることで，エネルギー供給量が減ってくると，風波の短周期成分が

水の粘性効果により減衰し，相対的に波長の長いうねりと呼ぶ波浪になる．このう

ねりは減衰しにくいことから，遠方まで到達可能である．

実際の波浪は，小さな波から大きな波になり，再び小さな波になる，波群と呼ば

れる現象を数十秒～数百秒の周期で繰り返している不規則波であるから，波浪のエ

ネルギーは波群の伝播速度で輸送されるため，波浪エネルギーと波群の伝播速度を

用いたエネルギー保存式を立てられる．そして，Hasselmann［14］などは，波高の

発生・発達・減衰を追跡する目的のために，波浪のエネルギーを方向スペクトルに

置き換えたエネルギー平衡方程式を提案した．基本的な形は次のようになる．

     , ,, gx gy
E

S f C S f CS f
S

t x y

              
  

ここに，  ,S f  は波浪の方向スペクトル [m2 s]，tは時間，Cgxと Cgyは波群の伝播

速度の xと y方向成分 [m/s]，xと yは岸沖方向と沿岸方向の水平距離，SEはエネ

ルギーの供給・消散を表す関数 [m2］であり，風から波へのエネルギー供給量を inS

で，波浪の成分波間の非線形相互作用によるエネルギーの輸送量を nlS で，そして，

砕波などによるエネルギー消散量を Sdsで表せば，近似的に次式のように書ける．

E in nl dsS S S S  

光易 [15］や土木学会研究現況レビュー小委員会 [16］などを参考に，式(1.2.2)

の SE項を適切な評価式で表して，波浪のエネルギー分布を求め，さらに，波浪のエ

ネルギーと有義波高との関係式を用いれば，発達・減衰する波高分布を求めること

が出来る．

((11)) エエネネルルギギーー供供給給量量

風から波へのエネルギー供給量 Sinについては，次の理論が良く知られている．

(1.2.1)

(1.2.2)

２)
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(a) Phillips［17］の共鳴理論（風波の発生理論）

水面の上昇部で負圧，水面の降下部で正圧となる条件下で，乱流状態になってい

る風の圧力変動よって発生した微小な海水面変動の伝播速度が，風の圧力変動の移

動速度と一致する場合に，その海水面変動が波浪として成長する．本理論は風波の

発生を説明するためには重要であるが，これによるエネルギー量は非常に小さく，

風波の発達を説明するためには，次の理論が必要である．

(b) Miles［18, 19］のせん断流理論（風波の発達理論）

海水面に波が現れるようになると，波面上の気流が水面波によって乱されて不安

定を生じ，圧力は海水面の風上側で高く，風下側で低くなり，波浪を風下側へ押す．

この様にして風のエネルギーが波浪へ効率的に供給される．

これらの定式化に関する研究は多数あり，ここに代表的な表現式を示す．

 2* ( , )in a bS C C u C S f   

ここで，右辺第 1 項の Caは Phillips の共鳴理論による線形的な波の発達を表す．

右辺第 2項は Miles の理論によるせん断力に比例する項で，Cbは比例係数（0.05 前

後），u*は風の摩擦速度，Cは波速，ωは角周波数である．

((22)) 非非線線形形相相互互作作用用にによよるるエエネネルルギギーーのの輸輸送送量量

波浪は，波群性を有する不規則波であるから，波高，波数，および，角周波数が

異なる規則波（成分波）を重ね合わすことで近似できる（線形近似）．しかし，波浪

の近似精度を高めたいならば，成分波間の非線形相互作用によるエネルギー交換を

無視できない．この波浪の成分波間の非線形相互作用によるエネルギーの輸送量 Snl

を，最初に理論的に表したのは Hasselmann［20］で，次のようである．

       
   

4 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 3 4 1 2 1 2 3

, , ,nlS F

N N N N N N N N d d d

               

  


          

     

        


  
   

ここに，ωは角周波数，は波数ベクトル（成分波の進行方向角 θを用いれば，x方

向成分は κcosθ，y方向成分は κsinθ）であり，Fはスペクトル成分の結合係数を表

す積分核関数，δは共鳴条件に対応するデルタ関数，N［=  S  


：  S  は波数ベ

クトルで表した方向スペクトル］は“wave action density”と呼ばれ，添え字は 4

組の成分波を示す．

深海域（水深／波長が 1/2 以上の場合）や浅海域（水深／波長が 1/2～1/25 の場

合）では，4組の成分波の干渉がエネルギー発達に影響する．波のエネルギーは干

渉により低周波数側と高周波数側へ移行し，白波によって高周波数側のエネルギー

が散逸するため，エネルギーのピーク周波数が低周波数側へ移動するのである．こ

(1.2.3)

２)

(1.2.4)

２)
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(a) Phillips［17］の共鳴理論（風波の発生理論）

水面の上昇部で負圧，水面の降下部で正圧となる条件下で，乱流状態になってい

る風の圧力変動よって発生した微小な海水面変動の伝播速度が，風の圧力変動の移

動速度と一致する場合に，その海水面変動が波浪として成長する．本理論は風波の

発生を説明するためには重要であるが，これによるエネルギー量は非常に小さく，

風波の発達を説明するためには，次の理論が必要である．

(b) Miles［18, 19］のせん断流理論（風波の発達理論）

海水面に波が現れるようになると，波面上の気流が水面波によって乱されて不安

定を生じ，圧力は海水面の風上側で高く，風下側で低くなり，波浪を風下側へ押す．

この様にして風のエネルギーが波浪へ効率的に供給される．

これらの定式化に関する研究は多数あり，ここに代表的な表現式を示す．

 2* ( , )in a bS C C u C S f   

ここで，右辺第 1 項の Caは Phillips の共鳴理論による線形的な波の発達を表す．

右辺第 2項は Miles の理論によるせん断力に比例する項で，Cbは比例係数（0.05 前

後），u*は風の摩擦速度，Cは波速，ωは角周波数である．

((22)) 非非線線形形相相互互作作用用にによよるるエエネネルルギギーーのの輸輸送送量量

波浪は，波群性を有する不規則波であるから，波高，波数，および，角周波数が

異なる規則波（成分波）を重ね合わすことで近似できる（線形近似）．しかし，波浪

の近似精度を高めたいならば，成分波間の非線形相互作用によるエネルギー交換を

無視できない．この波浪の成分波間の非線形相互作用によるエネルギーの輸送量 Snl

を，最初に理論的に表したのは Hasselmann［20］で，次のようである．

       
   

4 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 3 4 1 2 1 2 3

, , ,nlS F

N N N N N N N N d d d

               

  


          

     

        


  
   

ここに，ωは角周波数，は波数ベクトル（成分波の進行方向角 θを用いれば，x方

向成分は κcosθ，y方向成分は κsinθ）であり，Fはスペクトル成分の結合係数を表

す積分核関数，δは共鳴条件に対応するデルタ関数，N［=  S  


：  S  は波数ベ

クトルで表した方向スペクトル］は“wave action density”と呼ばれ，添え字は 4

組の成分波を示す．

深海域（水深／波長が 1/2 以上の場合）や浅海域（水深／波長が 1/2～1/25 の場

合）では，4組の成分波の干渉がエネルギー発達に影響する．波のエネルギーは干

渉により低周波数側と高周波数側へ移行し，白波によって高周波数側のエネルギー

が散逸するため，エネルギーのピーク周波数が低周波数側へ移動するのである．こ

(1.2.3)

２)

(1.2.4)

２)

れの計算は膨大な計算時間を要するため，近似的な計算法が工夫されている．さら

に，極浅海域（水深／波長が 1/25 以下の場合）では，3波共鳴によるエネルギー遷

移（波のエネルギーが低周波数側から高周波数側へ輸送される）が波の発達や減衰

に大きな影響を与えるようになる．例えば，一山型スペクトル波が岸に近づくと多

山型スペクトルに変わったりする．

((33)) エエネネルルギギーー消消散散量量

エネルギー消散量 Sds は，風波の峰部が白く崩れる現象（白波砕波と呼ぶ），海底

面との摩擦，および，水深が浅くなることによる砕波現象などによるエネルギー消

散から成る．

白波砕波によるエネルギー消散量 Swcの例として，Komen et al.[21] によって改

良された式（1.2.5）を，海底摩擦によるエネルギー消散量 Sbf の例として，Hasselmann

and Collins［22］の式を簡単化し，JONSWAP の観測結果で比例係数を決定した式

(1.2.6）を，以下に紹介する．この場合の全エネルギー消散量は，これら 2つの量

の和（Sds=Swc+ Sbf）となる．

ここに，C1，C2，C3は方向スペクトルの平衡が保たれるように与える調整係数，κ

は波数，は平均波数，STは波の全方向スペクトル， は平均角周波数，ωは角周

波数，Cfは底面摩擦係数，dは水深である．

風データに基づいて，波高，周期，波向の分布状況を推定することを波浪推算

(wave prediction）と呼ぶ．水平二方向（x, y）の運動方程式および連続式を用い

て，広域の長時間の波浪推算を行う正攻法は，計算負荷が非常に大きくなるため，

波浪の方向スペクトルを用いたエネルギー平衡方程式を解く方法が普及しており，

主要な数値計算モデルに MRI，WAM，WAVEWATCH，SWAN などがある．また，有義波法

と呼ばれる，経験式や算定図に基づく SMB 法やウィルソン法などの簡易手法もあり，

以下に解説する．

(1.2.5)

２)

(1.2.6)

２)
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22)) 波波浪浪推推算算モモデデルル

波浪予報は，船舶の安全で経済的な運航，漁船の安全な操業，海域での各種工事

やレジャー活動などに必要不可欠であり，世界中で実施されている．我が国でも，

気象庁が北西太平洋や日本沿岸の 24 時間波浪予想図のファクシミリ放送を行うと

共に，予想に用いた数値データを情報提供している．

波浪予報では，先に風分布の予測を行い，次に波浪推算モデルを用いて波浪分布

の経時変化を予測する．この波浪推算法は，有義波法とスペクトル法に大別される．

① 有義波法は，算定図か算定式に風速，吹送距離，吹送時間を与えて，有義波高と

有義波周期を求める手法であり，無次元化したパラメータより有義波諸元を求め

ることから，パラメータ法とも呼ばれる．風波とうねりが混在する場合や，風が

急変するとか，地形や気圧分布が複雑な場合には適当でない．

② スペクトル法は，方向スペクトルを用いた波浪のエネルギー平衡方程式を解く

ことで，波浪の発生・発達・伝播・減衰を計算する方法であり，有義波法に比べ

て計算負荷が大きいため，高性能コンピュータによる数値計算モデルとなるが，

物理的意味合いが明確であり，複雑な分布状態の場合でも対応できる．

((11)) 風風分分布布のの予予測測法法

波浪推算を行う場合，外力である風分布を事前に予測する必要がある．日本全体

の沿岸域の風分布については，気象庁が大気の乱流運動方程式を解く数値計算モデ

ルを用いて，24 時間予測結果を提供している．

ここでは，天気図から予測を試みる場合の簡易計算法を紹介する．

(a) 傾度風と海面上の風との関係

風は気圧の高い位置から低い位置へ吹くことから，気圧の変化率（これ以降，気

圧傾度と呼ぶ）が大きいほど風速は速くなる．この場合の風向は，高気圧側から低

気圧側へ等圧線に直交する．さらに，地球は自転していることから，Coriolis 力（北

半球での風向を右側へ偏向させる）を考慮する必要があり，この力と気圧傾度によ

る力が釣合った状態で生じる風を地衡風（geostrophic wind, a geostrophic wind）

と呼ぶ．

しかし，等圧線は曲線状である場合が一般的であるから，遠心力も考慮する必要

があり，これら 3 つの力が釣合った状態で生じる風を傾度風（gradient wind，a

gradient wind）と呼び，傾度風の風速 Ugrは式（1.2.7）で表される．また，傾度

風の風向は，Coriolis 力と遠心力の影響で，等圧線に沿って吹くようになる．

(1.2.7)2

41 1
2
cl

gr
a cl

f r dpU
f r dr
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22)) 波波浪浪推推算算モモデデルル

波浪予報は，船舶の安全で経済的な運航，漁船の安全な操業，海域での各種工事

やレジャー活動などに必要不可欠であり，世界中で実施されている．我が国でも，

気象庁が北西太平洋や日本沿岸の 24 時間波浪予想図のファクシミリ放送を行うと

共に，予想に用いた数値データを情報提供している．

波浪予報では，先に風分布の予測を行い，次に波浪推算モデルを用いて波浪分布

の経時変化を予測する．この波浪推算法は，有義波法とスペクトル法に大別される．
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ここに，fclは Coriolis 係数［＝2×地球の自転角速度×sin（緯度), 地球の自転
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ここに，Paは大気圧(=1013 hpa)，⊿ pは台風中心での気圧降下量，roは台風中心か

ら風速が最大となる位置までの距離，rは台風中心から対象位置までの直線距離で

図図--11..1144 北半球での風の高気圧からの吹出しと低気圧への吸込みの説明

高 低

地表面

表表--11..11 傾度風と海面上の風との関係

等圧線の接線に平行な直線からの

吹出し・吸込み角α（度）

U10/Ugr

(1.2.8)

(1.2.9)

ααα
ααα

緯度（度） 10 20 30 40 50

24 20 18 17 15

0.51 0.60 0.64 0.67 0.70

⊿ p

⊿ p
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ある．

式（1.2.8)，または，式（1.2.9）から求まる気圧傾度力を式（1.2.7）へ代入し，

表表--11..11の U10/Ugrを使えば，台風域内の海面上での風速を求められ，表表--11..11の吹込

み角を使えば，海面上の風向も設定できる．さらに，これらの台風の風速と風向に，

台風の移動速度（ただし，海面との摩擦抵抗力などによる低減を考慮する）をベク

トル合成すれば，波浪推算に必要な風情報を得た

ことになる．

なお，図図--11..1155に示す様に，台風中心の右側で

は，風の吹き込み方向と台風の移動方向が同じで

あるから, 風の勢いが強く危険半円と呼ばれる．

一方，台風中心の左側では，風の吹き込み方向と

台風の移動方向が逆であるから，風の勢いが弱く

可航半円と呼ばれる．

台風の気圧分布が楕円分布になっている場合に

は，野中ら［26］の次式が使える．

   2 2

1expcp p p
x y 

      
  

ここに，Pcは台風中心での気圧(=Pa－⊿ p)，xと yは直交座標での台風中心から対

象位置までの二方向距離，αと βは楕円分布の長軸と短軸を調整するための係数（長

さの次元を有する）である．

((22)) 有有義義波波法法

有義波法の基礎は第二次世界大戦中に築かれ，1944 年 6 月の連合軍のノルマンデ

ィー上陸作戦などで重要な役割を果たした．数値計算モデルが普及した現在でも，

数値計算結果の妥当性チェックや特定の地点の波浪を簡単に予測するためには有効

である．

(a) 風波の推算法その１（SMB 法）

風データから有義波諸元を推算できる算定図表を，Sverdrup and Munk［27］が第

二次大戦中に開発し戦後の 1947 年に公開した．さらに，Bretschneider［28,29］が

改良を加えたので，彼らの頭文字を取って SMB 法と呼ばれるようになった．その後，

Bretschneider［30］が風波領域の有義波高 H1/3と有義波周期 T1/3を求められる式

(1.2.11）と式（1.2.12）を提案した．また，最小吹送時間 tminは式（1.2.13）で定

義される．

図図--11..1155 台風の吹込みと
移動方向との関係
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ここに，gは重力加速度，U10は海面上 10m の平均風速，Fは吹送距離，Cgは波群の

伝播速度である．

式（1.2.11）～式（1.2.13）の式を用いて作られた風波推算図を図図--11..1166に示す．

本図の使い方は，風速 U10と吹送距離 Fを算定図にプロットして求めた有義波高お

よび有義波周期と，風速 U10と吹送時間 t を算定図にプロットして求めたそれらと

を比較して，より小さい方を選べば良い．
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式（1.2.11）と式（1.2.12）の tanh{x}は，双曲線関数の一種である．

この双曲線関数とは，変数 xに対応して，指数関数 xe を用いた下記のような

合成関数であり，下図に示すような曲線になる．
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また，双曲線関数を微分すると，次

の様になる．
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x
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
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図図--bb..11 双曲線関数のグラフ
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(b) 風波の推算法その 2（ウィルソン法）

Wilson［31］も海面上 10 m の平均風速と吹送距離から風波領域の有義波諸元を求

められる次式を提案しており，簡易算定法として良く用いられている．なお，最小

吹送時間 tminは式（1.2.13）から求められる．
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51/ 3

1/ 3
2

10 10

1.37 1 1 0.008
2
gT gF
U U

               

式（1.2.13）～式（1.2.15) の式を用いて作られた風波推算図を図図--11..1177に示す図図--

11..1166と比較して，波高の推算値はほぼ同程度になるが，周期の推算値は Wilson の

推算図の方が小さくなる傾向にある．本図の使い方は図図--11..1166と同じで，風速 U10

と吹送距離 Fから求めた有義波高および有義波周期と，風速 U10と吹送時間 tから

求めたそれらとを比較して，より小さい方を選ぶことになる．

吹送距離［海里, 1 海里＝1852 m］

図図--11..1166 Bretschneider［30］に基づく風波推算図

1 1.5 2 3 4 6 8 10 15 20 30 40 60 80 100 150 200 300 400 600 800 1000

100

90

80

70

60

50

40

30

26

22

20
18

16

14

12

10

100

90

80

70

60

50

40

30

26

22

20

18

16

14

12

10

1 1.5 2 3 4 6 8 10 15 20 30 40 60 80 100 150 200 300 400 600 800 1000

(1.2.14)

(1.2.15)

有義波高［m］

有義波周期［s］

吹送時間［時間］



�  1.2　波浪の発生機構

25

(b) 風波の推算法その 2（ウィルソン法）

Wilson［31］も海面上 10 m の平均風速と吹送距離から風波領域の有義波諸元を求

められる次式を提案しており，簡易算定法として良く用いられている．なお，最小

吹送時間 tminは式（1.2.13）から求められる．

21 / 2

1 / 3
2 2

10 10

0 .30 1 1 0.004gH gF
U U

               

51/ 3

1/ 3
2

10 10

1.37 1 1 0.008
2
gT gF
U U

               

式（1.2.13）～式（1.2.15) の式を用いて作られた風波推算図を図図--11..1177に示す図図--

11..1166と比較して，波高の推算値はほぼ同程度になるが，周期の推算値は Wilson の

推算図の方が小さくなる傾向にある．本図の使い方は図図--11..1166と同じで，風速 U10

と吹送距離 Fから求めた有義波高および有義波周期と，風速 U10と吹送時間 tから

求めたそれらとを比較して，より小さい方を選ぶことになる．

吹送距離［海里, 1 海里＝1852 m］

図図--11..1166 Bretschneider［30］に基づく風波推算図

1 1.5 2 3 4 6 8 10 15 20 30 40 60 80 100 150 200 300 400 600 800 1000

100

90

80

70

60

50

40

30

26

22

20
18

16

14

12

10

100

90

80

70

60

50

40

30

26

22

20

18

16

14

12

10

1 1.5 2 3 4 6 8 10 15 20 30 40 60 80 100 150 200 300 400 600 800 1000

(1.2.14)

(1.2.15)
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なお，合田［32,33］は Wilson の式を基に次の関係式を求め，推算図を用いない

簡易推算法を提案している．

0.73 0.46
min 10 t F U   または 1.37 0.63

min 10 F t U  

0.63
1/ 3 1/ 33.3T H 

ただし，式（1.2.16）において，tと tminは時間単位の吹送時間と最小吹送時間，F

と Fminは km 単位の吹送距離と最小吹送距離，U10は m/s 単位の海面上 10 m での平均

風速であり，式（1.2.17）において，T1/3は秒単位の有義波周期，H1/3は m単位の有

義波高であるから単位に注意する必要がある．そして，計算手順は次の通りである：

① まず，風域を決めて，U10［m/s]，F [km] および t [時間]を設定する．

② 次に，式（1.2.16）の第 2式から最小吹送距離 Fminを求め，F＞ Fminならば，

波浪の発達は吹送時間で規定されるので，吹送距離に Fminを用いて式（1.2.14)

から有義波高を，式（1.2.15）から有義波周期を求める．

③ 逆に，F＜ Fminならば，波浪の発達は吹送距離で規定されるので，吹送距離に F

を用いて式（1.2.14）から有義波高を，式（1.2.15）から有義波周期を求める．

なお，有義波周期は，先に求めた有義波高を用いて，式（1.2.17）から求めるこ

とも出来る．
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図図--11..1177 Wilson［31］に基づく風波推算図

（1.2.16）

（1.2.17）



第１章　波浪の統計的性質と発生機構 � �  1.2　波浪の発生機構

26

(c) 浅海域での風波推算法（ブレットシュナイダー法）

Bretschneider［34］は，海底による摩擦抵抗や，波浪の圧力変動の海底浸透によ

る発達抑制効果を無視できない浅海域での風波の推算図を提供している．図図--11..1188

は水深が一定の場合，図図--11..1199は海底勾配が 1/200～1/500 の場合である．

図図--11..1188 Bretschneider［34］に基づく浅海域での風波推算図（水深一定）

図図--11..1199 Bretschneider［34］に基づく浅海域での風波推算図
（海底勾配1/200～1/500）
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図図--11..1199 Bretschneider［34］に基づく浅海域での風波推算図
（海底勾配1/200～1/500）
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海面上 10 m の平均風速 U10と，対象海域の水深 hと，対象地点までの吹送距離 Fを

各図に当てはめることで，有義波高を求められる．ここで，海底摩擦係数 fとして，

実測値との比較から 0.01 が妥当であるとしている．

ただし，浅海域では，第 2章で解説する水深が変化することによる浅水変形や砕

波を生じる可能性が高いので，求められた有義波高に対して，これらによる補正を

加えなくてはいけない．また，これらの図からは有義波高しか求まらないので，有

義波周期は次式から求める．

1/ 3 1/ 33.86T H 

(d) うねりの推算法

波浪が風域から出て，風からエネルギーを供給されなくなると，風波はうねりと

なって伝播する．Sverdrup and Munk［27］は，風域を出た波浪がうねりとして，大

気の抵抗によりエネルギーを失い有義波高 H1/3を減衰させる一方で，短周期成分か

ら減衰していくため，有義波周期 T1/3が長くなっていく傾向を，式（1.2.19）によ

って表した．また，風域境界からの移動距離 Dへのうねり到達時間 trを式（1.2.20)

で表した．
1 / 2

1/ 3
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
ここに，Toと Hoは風域から旅立とうとする境界での有義波周期と有義波高であり，

Fは風域内の吹送距離である．

さらに，Bretschneider［35］も風域境界からの移動距離 Dでの有義波周期 T1/3

と有義波高 H1/3を求める式（1.2.21）を提案した．移動距離 Dまでの到達時間 trは

式（1.2.22）で求められる．
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Sverdrup and Munk［27］と Bretschneider［35］の比較のために，風域境界での

有義波高と有義波周期が各々10 m と 12 s，吹送距離が 500 km の場合の計算結果を

図図--11..2200に示す．

（1.2.18）

（1.2.19）

（1.2.20）

（1.2.22）

（1.2.21）
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((33)) ススペペククトトルル法法

有義波法は取扱いが簡単であるものの，うねりの評価が明確でなく，多方向の波

の扱いも曖昧であることから，Pierson, Neumann and James［36］は，Neumannが提

案した風速をパラメータに持つ周波数スペクトルと，cos関数の二乗型の方向分布関

数から成る方向スペクトルを用いて，波浪推算を行える PNJ法を開発したが，スペ

クトル法の信頼性が低い時代であったため，海岸事業関連ではそれほど使われなか

った．しかし，スペクトル法は物理的な組立に優れており，その後のコンピュータ

の性能向上に合わせて，複雑な地形へ適用でき，多成分の方向スペクトルを取扱え

るように，波のエネルギー平衡方程式に波浪の発生・発達・減衰機構を組込んだ本

格的な数値計算モデルが次々と発表された．特に，気象庁，ヨーロッパの European

Center for Medium Range Weather Forecast (ECMWF)，アメリカのNational Center

for Environment Prediction（NCEP）などの公的な気象予報機関から，高精度の海

上風などの気象データを容易に入手出来る環境が整備された現在，波浪推算を試み

る上で良好な環境が整っていると言える．

有義波法やPNJ法は，一定の風が吹き続けて発達・減衰する波浪を推算すること

から，エネルギー平衡方程式を一定の風速の下に積分した関係式を解いていること

に等しいから，風の場が時々刻々変化している場合の波浪推算に適用するには，本

来限界がある．この場合の波浪推算には，エネルギー平衡方程式を解く数値計算モ

デルを使う方が良く，以下の様な経緯を経て改良されていった．

① 第一世代モデル（1960年代から1970年代前半)：エネルギー平衡方程式において，

エネルギーの供給・消散関数 SEとして，風から波へのエネルギー供給量 Sinと,

砕波などによるエネルギー消散量 Sdsのみを考慮した数値計算モデルであり，方

向スペクトルを構成する成分波が互いに独立して伝播すると見なしているため,

風域境界からの移動距離  （km）
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図図--11..2200 Sverdrup and Munk と Bretschneider の式によるうねりの計算例
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図図--11..2200 Sverdrup and Munk と Bretschneider の式によるうねりの計算例

分離伝播モデル（Decoupled Propagation Method）とも呼ばれる．しかし，供給

量 Sinに実測データから得られた発達係数を採用したことによって，波浪の成分

波間の非線形相互作用によるエネルギーの輸送量 Snlを不完全に取り込んでしま

っている．その代表例に気象庁のIsozaki and Uji［37］のMRIモデルがある．

② 第二世代モデル（1970年代から1980年代前半)：波浪の成分波間の非線形相互作

用によるエネルギーの輸送量 Snlが，波の発達過程で大きな影響を持っているこ

とが明らかになった．それゆえ，供給量 Sinと消散量 Sdsに加えて，風波のスペク

トルの相似性を利用し，いくつかのパラメータによって風波のスペクトル変動を

記述することで，非線形相互作用によるエネルギーの輸送を間接的に考慮出来る

ようにしたが，うねり成分に対してはパラメータ表示出来ないため分離伝播モデ

ルを用いた，結合ハイブリッドモデル（Coupled Hybrid Model）が現れた．気象

庁の MRI-Ⅱが，このモデルの代表例である．さらに，風波成分とうねり成分に

分けることなく，非線形相互作用によるエネルギーの輸送量 Snlを直接的に考慮

した結合伝播モデル（Coupled Discrete Model）も現れた．ただし，第二世代の

結合伝播モデルは，輸送量 Snlの計算が複雑で大変なため，簡便なスキームで計

算出来るように工夫（例えば，輸送量 Snlを厳密に計算しておき，これを数個の

パラメータで表したものを，多様な波浪スペクトルに当てはめる）されていた．

③ 第三世代モデル（1980年代後半から現在)：結合伝播モデルが続いているが，エ

ネルギーの供給・消散関数 SEとして，供給量 Sinと消散量 Sdsに加えて，輸送量

Snlを出来るだけ正確に計算するようになった．この第三世代モデルには，WAve

Model Development and Implementation Group (WAMDI Group)［38］が開発した

WAMや，気象庁の植野・石阪［39］によるMRI-Ⅲモデルなどがある．そして，Delft

University of Technologyの Booi et al.［40］は，WAMをベースに極浅海域ま

で適用出来る SWAN（Simulating WAve Nearshore）モデルを開発した．さらに，

National Oceanic and Atmospheric Administration (NOAA）のThe WAVEWATCH Ⅲ

Development Group［41］も，WAMをベースに推算精度を高めた WAVEWATCH-Ⅲモ

デルを開発した．以下に，計算プログラムが公開されているWAMとSWANモデルに

ついて紹介する．

(a) WAM

WAM は，Hasselmann らによって組織された WAMDI Group［38］によって，1988 年

に発表された深海域用の波浪推算のための数値計算モデルであり，土木学会研究現

況レビュー小委員会［16］や橋本ら［42］にも詳  まとめられている.新     

のマニ   等は, https://github.com/mywave/WAM か                         WAM/
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で入手できる．

WAM では座標系として直交と球面の 2 種類が用意されており，風から波へのエネ

ルギー供給量 Sin , 4 波共鳴の非線形相互作用によるエネルギーの輸送（波浪のエネ

ルギーがスペクトルのピークから低周波側および高周波側へ輸送される現象）の量

Snl，そして，エネルギー消散量 Sdsとして，白波砕波と海底摩擦によるエネルギー

消散量が考慮されている.

球面座標系の場合のエネルギー平衡方程式は次式で表される．

     

 

sincos cos
,,

cos, 1
cos

sin tan
,

gg x

x

x x y

g x

in nl ds
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S fS f

RS f R
t

C
S f

R
S S S
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    


     

ここに，S(f,θ) は波浪の方向スペクトル，θx は緯度，θy は経度，θは波向，Rは地

球の半径である．

そして，風から波へのエネルギー供給量 Sinについて，WAM では，Phillips の発生

項を用いない方が妥当な結果を得やすいことから，これを無視している．それゆえ，

初期の波浪スペクトルがゼロだと，波が発生しないことになるため，吹送距離と初

期風速から計算される方向スペクトルを予め与えておく必要がある．

また，Miles の発達項には，Snyder モデルの次式を採用した．

( , ) max 0 0.25 28 cos( ) 1 ( , )a
in

w

uS B S f S f
C


    


         

  
  

ここに，Bは Miles の発達項の係数，ρaは大気の密度，ρwは海水の密度，uは摩擦
速度，Cは位相速度，αは風向，ωは角周波数である．

最新バージョンでは，次の Janssen モデルも導入された．

2( , ) ( , )a
in

w

S B S f S f
   


   

読者にとって分かりにくい次の数式表現について，ここで解説しておく．

 max ,y A B

 min , ,y A B C

 max ,y A B は，Aと Bの値の大きい方を yとして採用することを意味する．

 min , ,y A B C は，A，B，Cの内の最小値を yとして採用することを意味する．

（1.2.23）

（1.2.24）

（1.2.25）

（c.1）

（c.2）




