
第 1部 水理学の基本事項

第1部では、古典的かつ基本的な水理学の事柄について述べる。ここでは、複雑な数式の使用は最

小限に留め、水の運動の基本的な特性をまず理解することを目標として話を進める。

第 1 章 水 理 学 の 基 礎

水理学（hydraulics）とは、水の理（ことわり）の学問であり、水の力学である。古来、人類は水と

の付き合いの中で、その特性をうまく利用し、水を自らが生きていくための糧としてきた。古代の世

界 4大文明は、いずれも大河川流域に発展した。現代においても都市の大小を問わず、多かれ少なか

れ、都市は川の近くに造られてきた。これは取りも直さず人間と水の密接な関わり合いを示すもので

ある。また、我々人間だけでなく、動植物も含めた全ての生物にとって、水は必要不可欠なものであ

る。我々の体も 6割以上は水から作られている。そのような人と水の関わり合いの中で、人類は水を

うまく利用する術を開発してきた。水車、噴水、水道、用排水路、運河、港湾、船舶、ダム、堤防、

水門など我々の身近なものは、水の性質をよく理解して作られたものである。

水の性質を理解し、水の挙動を把握することは、昔から経験的になされてきた。17 世紀以降、微分

積分学が体系化され、それを基礎としてベルヌーイやオイラーらによる近代的な水の力学に関する学

問が生まれた。水に関するそれまでの経験的な知識を再整理し、まとめ上げたのが、いわゆる「水理

学」である。つまり、水理学は、人類がこれまで水と付き合ってきて分かってきた水の特性に関する

数理的な記述であると言える。「水理学」を修めることによって、我々は先人たちがこれまで築き上げ

てきた、水に関するさまざまな経験・知識を効率よく学ぶことが可能となり、さらに今後も水とうま

く付き合うことを容易にしてくれるであろう。

1.1 流体の物理的性質

1.1.1 流体

水理学や流体力学（hydrodynamics）では、水や空気のように容易に形を変えることのできる液体

（liquid）と気体（gas）である流体（fluid）を扱う。流体として扱う際には、その扱いは適度にマクロ

的である。例えば、水を細かく見ていくと水分子、あるいは水素原子と酸素原子などミクロなところ
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にまで行き着くが、そこまで小さなものを考える場合は、もはや我々が通常認知している水を扱って

いるのではなく、その内部の分子や原子などに着目する量子力学の世界となってしまうため、その集

合体としての水の運動を扱うには極めて不便である。また、水の分子同士の間には分子間引力・斥力

が働くが、このような力を個々に考えることもまた問題を複雑にするだけである。そこで、実際の流

体の問題を扱う場合のように巨視的な立場から物を見ればいい場合は、分子間距離と比較して非常に

大きい長さのスケールでは、個々の分子を考えるのではなく、連続的で固定された構造をもたないよ

うな物理モデルで代用する方が便利である。水理学・流体力学では、このような物理モデル、すなわ

ち、「実在流体における無数の分子の統計的な振る舞いを代表するような平均的な性質を備えている

ものを考える」という立場をとる。また、この連続的な性質をもった微小な体積の流体素分（流体塊）

を流体粒子（fluid particle）と呼ぶこともある。

1.1.2 単位と次元

水理学に限らず全ての自然科学で量的な議論を行う場合には、必ず次元（dimension）や単位（unit）

を確認する必要がある。取り扱う物理量、例えば流速や流量などは、さらに基本となる量を用いて求

められる物理量である。例えば、流速＝流れる距離／時間であるから、流れる距離を L（length）、時

間をT（time）とおけば、流速の次元は［L/T］と書ける。このような基本となる量を基本量と呼び、

水理学を含めた力学における基本量は、長さ（L）、時間（T）ならびに質量（M：mass）の 3つであ

る。この 3つの基本量に基づく単位系をM-L-T 系と呼ぶ。質量の代わりに力（F：force）を用いる

単位系もあり、F-L-T系と呼ばれる。質量の代わりに力を基本量として使うには、以下のニュートン

の第二法則を用いなければならない。

F=ma （1.1）

ここに、F：力、m：質量、a：加速度である。物理学におけるこのような等式は、単に左辺＝右辺と

いうだけではなく、左辺の次元が右辺の次元と等しいということも同時に表している。つまり、力 F

の次元は、質量m×加速度 aの次元［MLT-2］と等しいことを示しており、上記の基本量による表示

としてのM-L-T系から F-L-T 系への変換、あるいはその逆の変換は、（1.1）式を用いて容易に行う

ことができる。

次に単位についてであるが、次元と単位は似て非なるものである。次元とは、上述のように、例え

ば速度の次元が距離を時間で割ったものであることを示す概念的なものであるのに対し、単位は、世

界各地で用いられてきたローカルな単位から、世界標準として決められた国際単位系（SI 単位）まで、

それぞれ物理量の大きさをきちんと定量的に議論するために用いられている尺度である。

特に、1960 年に定められた SI 単位では、7つの基本単位（長さ（m）、質量（kg）、時間（s）、電流

（A：アンペア）、熱力学温度（K：ケルビン）、物質量（mol：モル）、光度（cd：カンデラ））並びにそ

れらを組み合わせた組立単位があり、我が国においても 1992 年の計量法の大改定以降、使用が定めら

れ普及してきている。組立単位の中には固有の名称をもつものも多数存在する。例えば、水理学でよ
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く使われる単位に限れば、力（N：ニュートン）、圧力（Pa：パスカル）、仕事・エネルギー（J：ジュー

ル）、仕事率（W：ワット）、周波数（Hz：ヘルツ）などがある。

1Nという力の定義は、式（1.1）を用いて以下のように説明できる。

1N＝ 1kg × 1m/s2＝ 1kg・m/s2 （1.2）

つまり、1kg の質量の物体に 1m/s2の加速度を与えうる力ということになる。一方、従来工学単位系

で使われてきた 1kgf あるいは 1kg 重は、地球上での質量 1kg の重さ（力）であるが、重力加速度

（gravitational acceleration）を g＝ 9.8m/s2とすれば、次のように書き直すことができる。

1kgf ＝ 1kg × 9.8m/s2＝ 9.8kg・m/s2 （1.3）

したがって、SI と工学単位系との変換には式（1.2）と式（1.3）より得られる以下の式が用いられる。

1kgf ＝ 9.8N （1.4）

さらに、従来用いられてきた単位系の 1つとしてCGS単位系がある。これは、長さ、質量、時間を

それぞれ cm、g、s の単位を使って表したものである。CGS単位系では、力の組立単位として dyn（ダ

イン）が使われてきた。1dyn を SI で表すと以下のようになる。

1dyn ＝ 1g・cm/s2＝ 1 × 10−3kg × 1 × 10−2m/s2＝ 1 × 10−5N

また、SI に限らず各種の単位系では接頭語がよく用いられる。SI 接頭語では 10 進法を利用してい

ることが特徴で、k（キロ：103）、M（メガ：106）、G（ギガ：109）、h（ヘクト：102）、c（センチ：10-2）、

m（ミリ：10−3）、μ（マイクロ：10−6）などを単位の前に付けて用いる。例えば、気象予報で気圧が

980hPa（ヘクトパスカル）などと言われているのをよく聞くが、これは以下のように説明される。

980hPa ＝ 980 × 100 × 1N/m2＝ 98,000N/m2＝ 9.8N/cm2 （1.5）

となるので、980hPa という圧力は、1cm2の面積当たり 9.8N ＝ 1kgf の力がかかっていることと同じ

状態ということになる。なお、Pa（パスカル）という単位は、圧力に用いられる固有名称をもつ組立

単位で、以下のように定義される。

1Pa ＝ 1N/m2＝ 1kg × 1m/s2/1m2＝ 1kg/s2/m （1.6）

つまり、1Pa は、1m2の面積に 1Nの力が加わったときの圧力の大きさを示している。

1.1.3 密度と単位体積重量

密度（density）とは、物質の単位体積当たりの質量である。水理学では通常、ギリシャ文字の ρ

（ロー）を用いる。次元は［M/L3］、単位は kg/m3、g/cm3などが用いられる。単位体積重量（unit

weight）とは、物質の単位体積当たりの重量である。次元は［M/L2/T2］、単位は kg/m2/s2、N/m3な

どが用いられる。従来、工学単位系では kgf/m3が使われていた。水理学では、単位体積重量には慣例

として γや wなどの記号を用いるが、上記の密度との関係は以下の通りである。

γ=ρg （1.7）

ここで、重力加速度 gは、地球上では場所によって若干異なるが、およそ g＝ 9.8m/s2である。右辺

の密度は単位体積当たりの質量であるから、この式は式（1.1）の加速度を gとしたときの単位体積当
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たりの重さを表わす式となっている。

例えば、水の密度、単位体積重量は、1気圧、4℃の状態では以下のようである。

ρ＝ 1g/cm3＝ 1,000kg/m3

γ＝ 1,000kg/m3× 9.8m/s2＝ 9.8 × 103kg/m2/s2＝ 9.8kN/m3
（1.8）

水の密度は、1気圧の条件下では 4℃で最大となり、それより水温が高くても低くても小さくなる。

したがって、単位体積重量も同様に 4℃で最大となる。また、海水の密度は、塩分を含んでいるために

真水より大きい。表 1.1 に水の密度と水温の関係を示す。

密度と似た用語に比重（specific gravity）がある。比重とは、対象となる物質と同体積の基準物質

との質量比のことである。基準物質としては通常 4℃の水が用いられる。したがって、比重は無次元

の量となる。

一方、気体の密度は温度と圧力によって大きく変化する。空気の場合は、以下の理想気体の状態方

程式（state equation）が良い近似で成り立つ。

p=ρRT （1.9）

ここで、pは圧力、Rは気体定数（乾いた空気で R＝ 287.0m2/s2/K）、T は絶対温度である。なお、

標準状態（1気圧、15℃）の空気の密度と単位体積重量はそれぞれ、

ρ＝ 1.225kg/m3

γ＝ 12.0N/m3  （1.10）

である。したがって、空気の密度は水の密度の約 1/816 である。

1.1.4 粘性

流体粒子に働く力は大きく分けて 2種類存在する。一つは距離をおいて働き、その質量に比例する

大きさの力を受ける、いわゆる質量力（body force）である。この質量力は重力、遠心力、電気力、電

磁力などその領域の「場」に由来する力である。これに対して、流体粒子に直接接触することによっ

て働き、その接触する面積に比例する大きさを持つ力があり、これを表面力（surface force）と呼ぶ。

例えば圧力や摩擦力などがその典型で、面に垂直に働く単位面積当たりの力を法線応力（normal

stress）、面に沿って働く単位面積当たりの力を接線応力（tangential stress）という。法線応力の代表

的なものが圧力（pressure）で、接線応力の代表的なものがせん断応力（shear stress）である。

流体が静止しているときは、圧力だけが内部応力として働いている。また、実在流体には、多かれ

少なかれ粘性（viscosity）が存在する。流体の分子間力や分子運動により生起される粘性は、粘り気

であり、流体の仮想的な体積が変形する際の抵抗である。この粘性に関係した応力を粘性応力（vis-
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表 1.1 水の密度と水温の関係
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cous stress）と呼び、法線応力と接線応力がある。これらの分類を図式化すると図 1.1 のようになる。

いま、図 1.2 のような流れがあるとしよう。流速が速い場所もあれば、遅い場所もあり、流れに垂

直な方向に速度勾配が存在する。このような流れをせん断流れ（shear flow）と呼ぶ。このせん断流

れの内部で流れに平行となるように図 1.2 に示すような仮想的に微小な水平面を考えた場合、水平面

のすぐ上面とすぐ下面の流速は異なり、上面の方が速く、下面の方が遅い。このとき、水平面は上の

流体により引っ張られるが、同時に下の流体は遅いため水平面を引き留めておくように働く。これが

せん断力（shear）である。

単位面積当たりのせん断力であるせん断応力を表わすには、慣習としてギリシャ文字の τ（タウ）が

用いられる。図 1.2 のように、流速 uが y方向に増加する流れでは、τの大きさは速度勾配の大きさ

にも比例するが、流体自身の粘性の大きさにも影響されることから、アイザック・ニュートン（Isaac

Newton）は以下のニュートンの粘性法則（Newtonʼs law of viscosity）を導いた。

τ=μ
du

dy
（1.11）

ここで、μ（ミュー）は流体の粘性係数（coefficient of viscosity）で、次元は［ML−1T−1］である。な

お、水理学では流体の粘性の基となる分子運動の活性度を表す量として、この粘性係数 μを流体の密
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図 1.1 流体粒子に働く力・応力の種類
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度 ρで割った次式の動粘性係数（coefficient of kinematic viscosity） νを用いることが多い。

ν=
μ

ρ
（1.12）

ν（ニュー）の次元は［L2/T］である。1 気圧、20℃の水と空気の ν は、それぞれ約 0.01cm2/s、

0.15cm2/s であり、空気の方が動粘性係数は一桁大きく、共に温度によって変化する（表 1.2 参照）。

表中の水の νについては 100 倍した値を示している。式（1.11）の法則に従う流体をニュートン流体

と呼ぶ。ただし、この法則に従わない粘性流体（非ニュートン流体）も存在するが、本書では扱わない。

［メモ 1.1］

動粘性係数 νは空気の方が水よりも 10 倍以上大きいことを先に述べたが、これは予想外という印

象を我々に与える。手で触ると空気はさらさら、水はしっとりと粘り気があるという感触があるから

である。これは我々の手は流体の動きを圧力やせん断力として感じるためで、式（1.11）より力に関

係する粘性係数 μの値は確かに水の方が空気より大きい。したがって我々の印象は μに依存してお

り、空気と水の密度 ρの大きな違いが νの大小関係の逆転を生じさせている。

1.1.5 表面張力

液体などの分子間に働く引力によって分子が密に集まってくる現象を凝集（cohesion）と呼ぶ。ま

た、液体が固体に接している所では、液体分子と固体分子の間に同様の分子間力が働くが、この現象

を付着（adhesion）と呼ぶ。一方、液体と気体の界面付近を考えると、分子の質量の違いから図 1.3 に

示されるように分子間の力の分布は非等方的となり、液体内部に向かう成分だけが大きくなる。その

結果、液体表面は縮まろうとする性質を持ち、液体と気体の界面に表面張力（surface tension）が働く

ことになる。水滴やシャボン玉が丸くなるのは、この表面張力によるものである。表面張力の次元は

［F/L］、すなわち［M/T2］であり、単位長さ当たりの力の次元となる。ちなみに温度 20℃における水

と水銀の表面張力は、それぞれ 72.75mN/m、476mN/mである。ここで、mN/mは従来使われてきた

CGS単位系の dyn/cmに相当する。
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図 1.3 液体内部の分子間力の分布



また、液体と固体の境界については、ガラス表面の水滴に代表されるように、水滴の表面は上記の

表面張力によって曲面となるが、水滴の端はある角度でガラス面と接する。この角度を接触角（con-

tact angle）（図 1.4 参照）と呼ぶ。接触角は、対象となる液体と固体の種類によってほぼ決まってお

り、水とガラスの接触角は 0〜9°、水銀とガラスの接触角は約 140°である。したがって、水はガラス

表面に平べったい形状で存在する水滴となるが、水銀の場合はガラス表面で球形となってしまうため、

接触面積が小さく摩擦が少なくなってコロコロと転がるようになる。

水面に細いガラス管を立てると、図 1.4 のようにガラス管内の水面が上昇する。この現象を毛管現

象（capillary phenomenon）と呼ぶ。毛管現象は、液体と管の間の接触角と水面に働く表面張力に起

因している。図中の水面上昇高さ hは、力の釣り合いより求めることができる。水面とガラス面が接

触する円周に働く表面張力を T、その鉛直軸とのなす角を θ、ガラス管の直径を Dとすれば、高さ h

の水柱の重さW=ρg
π

4
Dhは、表面張力の鉛直成分を円周上で合計したものと釣り合う。すなわち、

ρg
π

4
Dh=πDTcos θ （1.13）

したがって、水面の上昇高さは以下のように表わされる。

h=
4Tcos θ
ρgD

（1.14）

なお、水面のくぼみ aと水面の曲率半径 Rを用いると、幾何学的な関係から

a=R1−sin θ=
D

2
1−sin θ

cos θ
（1.15）

と表せるので、aを測定することで逆に θが求められ、式（1.14）より水面上昇高さも算出できる。

1.1.6 圧縮性

流体には、空気のように縮んだり膨らんだりすることが容易な気体と、水のように膨らんだり縮まっ

たりするのがなかなか難しい液体とがある。しかしながら、厳密にはそのどちらにも大小の違いはあ

るが圧縮性がある。そのような流体を圧縮性流体（compressible fluid）と呼ぶ。体積 V の流体を取り
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図 1.4 ガラス管内を上昇する水面
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囲む面に圧力 pが作用して釣り合っている状態から、圧力がわずかに δpだけ増加すると、体積が

V−δV に変化するとしよう。このとき、体積ひずみは−δV /V と表され、圧力増加分 δpに比例す

る。このときの比例定数を αとすると、

δp=
−δV /V

α
=E（−δV /V） （1.16）

と表わせる。ここで、αは圧縮率（coefficient of compressibility）、E（=1/α）は体積弾性係数（bulk

modulus of elasticity）と呼ばれる。特に水の圧縮性は小さく、20℃、1〜500 気圧で E ＝ 2.3 × 109Pa

くらいの値になり、ほとんど体積は変化しない。したがって多くの場合水は非圧縮性流体（incom-

pressible fluid）として扱って良い。

【例題 1】以下の文章を完成させよ。

気体や液体のように容易に形を変える性質を持つものを（ ① ）という。単位体積あたりの質量

を（ ② ）という。単位体積あたりの重量を（ ③ ）という。

国際的に用いることになった単位系を（ ④ ）という。この単位系は、（ ⑤ ）、（ ⑥ ）、

（ ⑦ ）という力学で用いる単位の他に、電流（A）、熱力学温度（K）、物質量（mol）、光度（cd）

を加えた計 7つの基本単位から構成される。以上の基本単位の他に（ ⑧ ）という単位があり、1kg・

m/s2＝（ ⑨ ）というように簡単に記述することができる。

流体中に仮想的な 1つの面を想定するとき、その面の単位面積に作用する力を（ ⑩ ）と呼ぶ。

これは、面に垂直に働く（ ⑪ ）と（ ⑫ ）からなる。そのうち後者は、速度勾配が存在するよ

うな場に生じ、その大きさは速度勾配と（ ⑬ ）に比例する。このような物理的法則を（ ⑭ ）

と呼ぶ。なお、この法則に従わない流体を（ ⑮ ）という。

粘性係数を密度で割ったものを（ ⑯ ）と呼ぶ。この量は、1気圧、20℃の水と空気ではおおよそ（

⑰ ）と（ ⑱ ）である。

流体の周りの圧力を増加させたとき、体積が減少するが、この減少分の元の体積に対する割合（正

の量）を（ ⑲ ）と呼ぶ。これと圧力増加量との比を（ ⑳ ）と呼び、α で表す。α の逆数を

（ ㉑ ）と呼び、Evで表す。気体の場合は、圧力によって容易に体積を変化させることが可能なの

で、このような流体を（ ㉒ ）と呼ぶ。これに対して、液体の場合は、（ ㉓ ）と考えることが通

常可能である。

［解答］①流体 ②密度 ③単位体積重量 ④ SI ⑤⑥⑦質量（kg）、長さ（m）、時間（s）（順不同）

⑧組立単位 ⑨ 1N ⑩応力 ⑪法線応力 ⑫接線応力 ⑬粘性係数 ⑭ニュートンの粘性法則 ⑮

非ニュートン流体 ⑯動粘性係数 ⑰ 0.01cm2/s ⑱ 0.15cm2/s ⑲体積ひずみ ⑳圧縮率 ㉑体積

弾性係数 ㉒圧縮性流体 ㉓非圧縮性流体
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【例題 2】体積 V ＝ 0.08m3、重さ 690N の油の単位体積重量と密度を SI および工学単位系で求めよ。

［解答］

単位体積重量

γ=
Mg

V
=

690N

0.08m=8.625kN/m （SI）

γ=8.625kN/m=8625N/m=
8625
9.8

kgf/m=880.10kgf/m（工学単位系）

密度

ρ=
γ

g
=

8625N/m

9.8m/s =880.10kg/m （SI）

1kg=
1kgf

9.8m/s =0.102kgfs /mより

ρ= 880.10 × 0.102kgfs2m−1/m3＝ 89.77kgfs2/m4（工学単位系）

1.2 静水圧

静止している流体に働く圧力を静水圧（hydrostatic pressure）という。本節では、圧力の基本的な

概念と静水圧の計算方法、さらに平面や曲面に作用する静水圧による力の算出方法について概説する。

1.2.1 圧力

圧力は、法線応力の 1つで、常に作用する面に垂直な方向をもつ。しかしながら圧力は、本来スカ

ラー量であり、大きさのみをもつ量で方向性はもたない。流体に接する固体などが存在する場合に初

めて方向性が出てくるのである。また、このスカラー量である圧力の微分（勾配）は、流体を運動さ

せる駆動力となる。これを圧力勾配（pressure gradient）と呼び、流体の運動方程式を構成する重要

な要素である。

通常、圧力の表示には絶対圧力とゲージ圧の 2種類がある。絶対圧力（absolute pressure）は、絶対

真空を基準として計った圧力であり、圧力はゼロより小さくはならない。一方、ゲージ圧（gauge

pressure）は、特に液体中の圧力を取り扱う際によく用いられ、大気圧を基準（ゼロ）として計った圧

力を指す。液体中の圧力の大小を問題にする場合には、後者の方がより直感的で分かりやすい。なお、

流速が速い場所では圧力が減少し、ゲージ圧がマイナスになる場合がある。これを負圧（negative

pressure）と呼び、水理構造物の中での大きな負圧は絶対に避けなければならない。もし、負圧が発

生すれば、大きな力が働いて構造物がダメージを受ける場合がある。

圧力に関する基本的かつ本質的な原理は、パスカルの原理（Pascalʼs theorem）（ブレーズ・パスカル

（Blaise Pascal））である。これは、閉曲面で閉じた体積の流体に作用する圧力の変化は、一様に全ての
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方向の閉曲面内に広がっていくというものである。流体を構成する粒子同士がいわば押しくらまん

じゅう的に圧力を伝えていくということを述べた原理である。

なお、圧力の単位は既に述べた通り Pa（パスカル）という単位を用いるが（通常の SI 単位との変換

は式（1.6）を参照）、従来用いられて来た単位との間の関係は以下のようである。

1気圧（標準気圧）＝ 760mmHg＝ 1.013bar ＝ 1.013 × 105Pa ＝ 1013hPa

1.2.2 静水圧分布とマノメーター

水中の圧力は、水面から下方へいくにしたがって増加していく。図 1.5 に示すように、水面から h

だけ下方にある対象地点Aまでの水柱（断面積 a）を考えると、静止している流体では、この水柱に

働く力は釣り合っている。水の密度を ρ=一定とおけば、鉛直方向の力の釣り合いは、

ρgah+pa−pa=0 （1.17）

となる。ここに、gは重力加速度、pは大気圧、pは対象とする水深 hの地点における水の圧力であ

る。ゲージ圧では p=0となるので、次式が得られる。

p=ρgh （1.18）

したがって、水深 hをいろいろ変えてみれば、水深が小さい所は圧力が小さく、深くなるにつれて圧

力は直線的に増加することが分かる。これが静水圧分布である。図 1.5 には、その圧力の分布も示し

ている。

式（1.18）は、以下の 2つの重要な情報を持っている。

（1）静水圧は水面から下方に向かって直線的に増加する（比例定数 ρg）。

（2）同一流体で同一深さであれば、同じ圧力であり、水平方向には圧力は変化しない。

図 1.6 のような水中の任意の場所における圧力を計測するために接続した鉛直管をマノメーター

（manometer）と呼ぶ。マノメーター内部には場合によって密度の異なる複数の種類の液体が使われ

ることがある。マノメーター内の圧力の計算を行う際には、上記の（1）および（2）の知識を利用す

る。

例えば、図 1.6（a）のようにガラス管の端部が大気に触れている場合、大気に接している点Bはゲー
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図 1.5 静水圧分布（ρ＝ const. の場合）
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ジ圧で 0 である。そこから点Aまでの深さは hであり、水平方向には圧力は変化しないので、点A

の圧力 pは、

p=ρgh （1.19）

と求まる。途中管が曲がっていても、中の液体が同じであれば、式（1.19）の結果は変わらない。一

方、図 1.6（b）のように、管内に別の液体（密度 ρ）が混じらずに部分的に存在する場合は状況が少

し異なってくる。点Cにおける圧力は、上記と同じ方法で以下のように求まる。

p=ρgz

さらに、点Dは、点Cと同一流体同一高さであることから、同じ圧力となる。すなわち、

p=p=ρgz

次に、管の点Dから点Aまでは異なる液体（密度 ρ）が占めているので、

点Aの圧力と点Dの圧力との間には次の関係がある。

p=ρgh−z+p

=ρgh−z+ρgz （1.20）

=ρgh+ρ−ρgz

ちなみに、ρが ρに等しければ、式（1.20）は式（1.19）に

等しくなることが容易に確認できる。一方、ρの大きい液体

を用いると、同じ圧力 pに対して上昇量 zを抑えることが

できるため実用面でρの大きい液体が用いられることがあ

る。

【例題 3】図-AのA点の圧力を水柱高で求めよ。ただし、水

銀の比重 s=13.59、h=0.6m、h=0.2mとおく。
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図 1.6 マノメーターの圧力計算
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［解答］図中のA, B, C, D の各地点における圧力をそれぞれ p , p , p , pとおく。以下、圧力

はゲージ圧で議論するものとする。このとき、B点では大気に接しているので

p=0

また、同一流体で同一高さにある場所では圧力が等しいので、

p=p

さらに、AとDの間は水で満たされているので両地点の圧力の関係は次式となる。

p=p+γ h−h

また水銀の単位体積重量は γsと表せるので、B、C点での圧力の関係式は、

p=p+γsh

となる。したがってA点の圧力は

p=p−γ h−h=p−γ h−h

=p+γsh−γ h−h

=γhs−1+γh

と表せる。圧力を水柱高によって表現することにして、与えられた数値を代入すれば以下が得られる。

p

γ
=hs−1+h=0.6×12.59+0.2=7.754m

1.2.3 平面に作用する静水圧

前節では、水中の 1点における静水圧がどのようになるのか、あるいはマノメーターという管の中

の圧力がどのように変化するのか、といった個々の点における圧力の話であったが、工学的にはそれ

らの合計、つまり積分した合力を問題にすることが多々ある。例えば、図 1.7 に示す黒色の板にどの

くらいの水圧がかかるのかということは、板の設計をするために必要である。また、図 1.8 のように、

任意の形の物体に働く浮力もまた船などの設計において重要となる。本節では、特に平面に作用する

静水圧について見ていく。図 1.7 における黒い板には、面に垂直に静水圧が作用している。また、そ

の大きさは、深さと共に増加する。これを定量的に評価するために図 1.9 のように座標軸を取り、板

に働く静水圧の合力を見積もってみる。図中の y軸の記号は、紙面に垂直上向きの座標軸を表す。鉛
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図 1.7 平面に作用する静水圧の合力

図 1.8 曲面に作用する静水圧の合力

（この場合は、結果として浮力となる）



直下方の z軸はここには示していない。その代わり、水平 x軸と θの角度をなす、板と同じ方向の座

標軸として s軸を考える。板の図心（板に対して垂直な方向から見た時の図形の図心）の深さを h、

その s座標値を sとおけば、明らかに

s=
h

sin θ
（1.21）

である。図心の位置における静水圧は、深さが hであるから、流体の密度を ρ、重力加速度を gとお

けば、式（1.19）から

p=ρgh （1.22）

となる。板の他の位置における静水圧は、深さが hより小さい所と大きい所でそれぞれ pより小さ

い圧力と大きい圧力の場所が出てくる。板に働く力は、（板の微小面積）×（そこに作用する圧力）の

合計で算出されるが、同じ深さの静水圧は等しくなることを利用して、板に働く力を効率的に求める

ことができる。

この板に垂直な方向から見た板の図と、関連する座標軸などを図 1.10 に示す。水面からの任意の

位置 sにおける微小な帯の図形の s方向の幅を ds、帯の部分の面積を dAとおき、ここに作用する静

水圧の合力を dPとすれば、

dP=pdA=ρgssinθ dA （1.23）

と求まる。なお、dAは図形の形状により距離 sの関数形として記述され、帯の幅 b (s)と dsの積とし

て決まるものである。したがって、図形全体に作用する静水圧の合力は、式（1.23）を図形全体で積

分して

P=
dP=

ρgssinθ dA=ρgsinθ 
sdA

=ρgsinθ sA=ρghA=γhA

（1.24）

と求まる。式（1.24）の意味は、「平面に作用する静水圧の合力は、その平面の傾きに関係なく、考え

ている平面上の図形の図心の深さと、図形の面積で決まり、その大きさは P=γhAで与えられる」と

いうことである。また
fdAは、それぞれの面積素分 dAとそこにおける関数 f を乗じて、図形 A
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図 1.9 平面に作用する静水圧の合力
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の全域に渡っての総和したものと考えられるが、面積素分 dAを無限に小さくしたときの極限の総和

を意味し、面積積分と呼ばれる。図心の定義より
sdA=Sとなる。また、

dA=Aである。

次に、この合力 Pのベクトルが作用する点（作用点） sを求める。図 1.11 には、静水圧 pの分布

も示しているが、この pの y軸回りの力のモーメントの和と合力 Pの力のモーメントが等しくなる

ことから、次式が得られる。


psdA=P∙s （1.25）

式（1.25）の左辺は次のように変形される。


psdA=ρgsin θ

sdA

=ρgsin θ
s+s' 


dA=ρgsin θ

s
+s' dA

=ρgsinθ s
A+I

（1.26）

ここで、s'=s−s、
sdAは図形の y軸に関する断面 2次モーメント、I=

s' dAは図形の図心を

通り y 軸に平行な軸の回りの断面 2 次モーメントであり、それぞれ長さの 4 乗の次元を持つ。式

（1.25）、（1.26）より、合力 Pの作用点の場所

sは、以下のように求まる。

s=


psdA

P
=

ρgsinθ s
A+I

ρgssinθ A
=s+

I

sA

（1.27）

図 1.11 において、Pの作用点 sが sより若干
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表 1.3 主な図形の図心の位置と断面 2次モーメント

断面 2次モーメント

I

a
h

2
図心位置（上辺より）

図の説明

円長方形図形

h

36
a+4ab+b

a+b

h

3
h

3
a+2b
a+b

三角形 台形

πa

4
bh

12
bh

36

図 1.11 平面に作用する静水圧の分布
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下の方に来ているのは、黒色の板に作用する静水圧分布が s方向に大きくなる台形分布を示すためで、

式（1.27）の右辺第 2項に反映されている。

一方、s軸回りについても力のモーメントの釣り合いより次式が得られる。ここで yは s軸から微

小面積 dAの図心までの距離、yは Pの作用点の s軸からの距離である。

P∙y=
pydA=ρgsin θ

sydA （1.28）

したがって、作用点の y座標 yは、

y=
ρgsin θ

sydA

P
=

ρgsin θ
sydA

ρgssinθ A
=


sydA

sA
（1.29）

と求まる。ここで 
sydAは、慣性相乗モーメントと呼ばれる長さの 4乗の次元をもつ量である。

なお、作用点を求めるにあたって必要となる主な図形の図心の位置と断面 2次モーメントについて、

表 1.3 に示す。ちなみに表中の上三角形は、台形の場合で b=0とおいたものに相当する。

【例題 4】図-B のように水中で鉛直面に平行に長方形の

板（幅 b=5m、高さ h=3m）が設置されている。板の上

辺の水面からの深さを h=1.5mとするとき、この板に

働く全水圧と作用点を求めよ。ただし、水の単位体積重

量を γ=1tf/m=9.8kN/mとおく。

［解答］式（1.24）より、板に作用する全水圧は

P=γhA=γ h+
h

2
hb

=1×1.5+3/2×3×5=45tf=441kN

作用点は、式（1.27）を用いて板が鉛直面に平行であることから

h=h+
1
h

I

A
=h+

h

2
+

1
h+h/2

I

bh

となる。ここで断面 2次モーメントは、表 1.3 を参照して

I=
bh

12

となるので、作用点は次式となる。

h=h+
h

2
+

1
h+h/2

bh

12bh

=h+
h

2
+

h

12h+h/2

=1.5+1.5+
3

121.5+1.5
=3.25m
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【例題 5】図-C の円形の板に作用する全水圧と作用点

を求めよ。

ただし、板の図心の深さ h=2m、板の半径 a=1m、板

の水平面からの傾きを θ=30°とし、海水の単位体積

重量を γ'=1.025tf/m=10.045kN/mとする。

［解答］式（1.24）より、板に作用する全水圧は

P=γ'hA=γ'h×πa

=1.025×2×3.14×1=6.437tf=63.08kN

合力の作用点は、表 1.3 を参照して

s=s+
1
s

I

A
=

h

sin θ
+

sin θ

h

πa

4πa

=
h

sin θ
+

sin θ

h

a

4
=

2
0.5

+
0.5
2

1

4
=4+

1
16

=4.063m

1.2.4 曲面に作用する静水圧

曲面に作用する静水圧では、圧力が曲面に垂直に働

く結果、圧力のベクトルがさまざまな方向に分布する

ことになるため、それを直接積分して求めるのは容易

ではない。しかしながら、水理学ではそれに代わる方

法として、「対象とする曲面を直交座標系の x,y,z 3

軸に垂直な 3平面に投影し、それぞれの投影された面

積成分に働く圧力について計算する」という便利な方

法があるので次に説明する。

簡単のため、水平 2次元の図を用いる（図 1.12）。曲面 Aに作用する静水圧を考え、曲面の一部の

面積素分 dAに圧力 pがかかっているとする。この面積素分 dAに垂直な外向きの単位法線ベクトル

を n

とする。このベクトルが x軸、y軸となす角の方向余弦は、それぞれ

cos x,n , cos y,n

である。この面積素分 dAに作用する圧力 pによる力は、x成分 dPと y成分 dPに分解され次式と

なる。

dP=pdAcos x,n, dP=pdAcos y,n （1.30）

一方、面積素分 dAを x軸ならびに y軸に垂直な平面に投影した面積は、それぞれ、

dA=dAcos x,n

dA=dAcos y,n
（1.31）

と書けるので、式（1.30）は次式のように書き直せる。
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図 1.12 曲面に作用する静水圧の成分分解図
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dP=pdA, dP=pdA （1.32）

実際には 3次元空間となっているので拡張して積分すると

dP=pdA=P

dP=pdA=P

dP=pdA=P

（1.33）

となる。これらの式はそれぞれ、曲面 Aを x、 y、 z軸に垂直な平面に投影した A、 A、 A上

で圧力 pを積分したものとなっている。ここでは、水平方向に x軸、y軸、水面から鉛直下方に z軸

をとっている。

静水圧の式（1.18）は p=ρgzと書き直せるので、これを式（1.33）に代入すれば、

P=

ρgzdA, P=

ρgzdA, P=

ρgzdA （1.34）

が得られる。式（1.34）の P、Pは、それぞれ静水圧を x軸、y軸に垂直な鉛直面内の A、Aで積

分したものであるから、基本的に式（1.24）と同じである。つまり、

P=

ρgzdA=γhA , P=

ρgzdA=γhA （1.35）

と書ける。ただし、h、 hはそれぞれ A、Aの図心までの深さである。一方、式（1.34）の P

は、

P=

ρgzdA=γ

zdA=（曲面 Aから水面までの水柱の重量） （1.36）

となる。以上のように曲面に働く静水圧は、各方向成分に分けて計算すると比較的簡単に求めること

ができる。

次に、静水圧の合力の作用点については、式（1.35）の静水圧の合力の水平成分の場合、平面に作

用する静水圧合力の作用点を求める式形（式（1.27）、（1.29））がそのまま使える。すなわち、

h=


pzdA

P

=
ρg

zdA

ρghA

=


zdA

hA

（1.37）

y=


zydA

hA

（1.38）

ただし、h、 yは、Pの作用点の位置（hは水面からの深さ、yは水平 y方向の z軸からの位

置）である。また yは z軸から dAの図心までの距離である。Pに関しても同様の式が得られる

が、ここでは省略する。一方、鉛直成分 Pの作用点については、

x=


pxdA

P

=
ρg

xzdA

γ

zdA

=


xzdA



zdA

（1.39）
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y=


pydA

P

=
ρg

yzdA

γ

zdA

=


yzdA



zdA

（1.40）

となるが、これは、曲面 Aから水面までの水柱の重量の重心の式に他ならない。

したがって、以上をまとめると、曲面に作用する静水圧の合力については以下のようになる。

（1）曲面に作用する静水圧の合力は、水平 2方向成分と鉛直成分に分離でき、水平成分については、

平面に作用する静水圧の合力の式と同じであり、作用点の位置の式も同様である。

（2）鉛直成分の大きさは、曲面から水面までの水柱重量に等しく、作用点はその重心を通る。

以上の結果を用いると、流体中の物体に働く浮力（buoyant force）に関する有名なアルキメデスの

原理（Archimedesʼ principle）「流体中の物体に働く浮力は、その物体が排除した流体の重量に等しい」

を簡単に説明することができる。

アルキメデス（Archimedes）は、この原理を利用して、王様の王冠が本当に金だけでできているの

か、それとも銀など他の鉱物が混ぜられているのか見破る方法を発見したと言われている。

【例題 6】図-Dは、水面から底面まで太線のような曲

面で水に接しているゲートを真横から見た図である

（水深 h=3m、水はゲートの左側にある）。この曲面の

ゲートに働く全水圧の x成分および z成分を求め、さ

らにそれぞれの作用点を求めよ。ただし、曲面の幅は

単位幅で考え、水の単位体積重量を

γ=1tf/m=9.8kN/mとおく。

［解答］全水圧の x成分は、式（1.35）より

P=γhA=1×
3
2
×3=4.5tf/m=44.1kN/m

その作用点は、式（1.37）より

h=


zdA

hA

=

1
3
h

h

2
h

=
2
3
h=2m

と求まる。全水圧の z成分は、式（1.36）より

P=γ

zdA

=γ
 


−x+3dx=γ −

1
3
x+3x

 


=3.464tf/m=33.948kN/m

となる。z成分の作用点は、式（1.39）より、
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x=


xzdA



zdA

=


 


x−x+3dx


 


−x+3dx

=
1

2 3 −
x

4
+

3
2
x

 



=
1

2 3 −
9
4
+

9
2 =

3 3
8

=0.649m

1.3 次元解析

水理学に出てくる物理量は、例えば、流速、加速度、力、圧力、エネルギーなどであるが、それら

は、質量─長さ─時間（M-L-T系）という 3つの物理量を基本量として選べば 1.1.2 節で述べた通り

（質量の代わりに力を基本量として選べば、F-L-T系でも記述できる）、これらの基本量のべき乗の積

の組み合わせで表すことができる。例えば、質量、長さ、時間の次元を［M］、［ L］、［ T］とおけば、

流速 vは、［ LT］で表わされる。同様にして、他の主な物理量の次元と単位を示すと表 1.4 のよう

になる。

1.1.2 節で述べたように、方程式の等号で結ばれた両辺は、値が等しいことと同時に次元も等しく

なる。例えば、質点系の力学で、等加速度運動をしている質点の移動距離 Sと時間 tに関する公式は、

初速度 v、加速度 aとして次式のようになる。
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表 1.4 水理学で出てくる主な物理量の次元と単位

a

時間

面積

体積

速度（流速）

加速度

mℓ長さ

kgm質量

SI 単位記号物理量

L

M FLT

方程式 次元（M-L-T） 次元（F-L-T）

s

m

m

ms

ms

t

A

V

v

LT LT

v=dℓdt LT LT

V=ℓ  L L

A=ℓ  L L

T T

L

MLT

MLT

Q=Av

F=ma

E=Fℓ

Q

F

E

流量

力

エネルギー・仕事

a=dvdt

kgm⋅s=PaFLMLTp=FAp圧力

ms

kg⋅ms=N

kg⋅ms=J

LT

F

FL

LT

M

ρ

γ

μ

ν

T

せん断応力

運動量

密度

単位体積重量

粘性係数

動粘性係数

表面張力

MLT

MLT

LT

MT

τ=FA

M=mv

ρ=mV

γ=mgV

τ=μdudy

ν=μρ

T=Fℓ

τ

ms

kgs =Nm

FL

FT

FLT

FL

FLT

LT

FL

MLT

MLT

ML

kgm⋅s=Pa

kg⋅ms

kgm

kgm⋅s

kgm⋅s



S=vt+
1
2
at  （1.41）

この式の両辺の各項の次元を書き出すと以下のようになる。

L=LTT+LTT （1.42）

このような式を次元方程式（dimensional equation）と呼ぶ。式（1.42）の各項の次元は、結果的に［L］

に帰着し、この式が距離に関する式であることが分かる。したがって、次元を考察することは、その

方程式の物理的意味を知ることや、計算ミスを見つけるのに便利である。

水理学に限らず、物理学や化学、工学などさまざまな分野において、現象を支配する物理量の間の

関係を見出すための強力なツールとして知られているのが、次元解析（dimensional analysis）である。

次元解析は、フォンシネックス（Francois Daviet de Foncenex）によって初めて開発された。しかし、

その実用的な重要性は、レイリー卿（Lord Rayleigh）による次元解析に関する数多くの貢献や、バッ

キンガム（Edgar Buckingham）によるπ定理が発表されるまではそれほど理解されてはいなかった。

1.3.1 レイリーの方法（Rayleighʼs method）

物理現象を規定する関数型の中で最も簡単な記述法は、物理量のべき乗の積で表す方法である。今

対象としている現象に関係する可能性のある物理量 A, A, ..., Aが次式の関係式で関係づけられる

と仮定する（kは比例定数）。

A=kA
 A


A


⋯A

 （1.43）

水理学を始めとする力学では、基本量としてM−L−T系（もしくは F−L−T系）を使うので、式

（1.43）をM−L−T系で整理すれば、両辺の次元は等しいから、α, β, γ ,…,δに関する連立方程式が得

られる。ただし、基本量が 3つしかないので、α, β, γ ,…,δを一意に決定するためにはその変数の数は 3

個以下でなければならない。しかしながら、一意的に決まらなくても残った変数で整理することで、

重要な無次元パラメータを抽出することが可能である。

一例として流体中に静止している球から流体が受ける抵抗力を調べてみよう。流体の密度を ρ、粘

性係数を μ、流速を U、球の直径を dとおき、球から流体が受ける抵抗 Dは式（1.43）から次式のよ

うに表されると仮定する。

D=kdU ρμ （1.44）

このとき、次元方程式は、

MLT=L

LT


ML


MLT


（1.45）

となるので、M−L−Tについて整理すると、

M: 1= γ+δ

L : 1=α+β−3γ−δ

T : −2= −β −δ  （1.46）

となる。δを未知のまま残して他の 3つの指数について解くと、
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
α=2−δ

β=2−δ

γ=1−δ

（1.47）

が得られる。したがって（1.44）式は、

D=kρU d 
ρUd

μ 


（1.48）

となる。動粘性係数 ν=μ/ρを導入し、無次元抵抗の形に変形すると

D

ρU d  =k
Ud

ν 


（1.49）

となり、より一般性を持たせてべき乗の代わりに関数型 φを用いれば、

D

ρU d  =φ
Ud

ν  （1.50）

と書ける。式（1.50）の左辺は無次元抵抗を表し、右辺の括弧の中も同様に無次元パラメータである。

実はこの無次元パラメータは、水理学・流体力学で重要な量で、レイノルズ数（Reynolds number）と

呼ばれる。したがって、流体中の球から流体が受ける抵抗は、レイノルズ数という無次元パラメータ

で規定されることが分かる。

なお、式（1.44）の仮定の仕方には任意性がある。例えば、U=kdDρμと仮定することもでき

る。この場合次元解析より、次式が得られる。

dρU

μ
=φ

Dρ

μ 
上式は一見式（1.50）と異なっているように思われるが、容易に上式から式（1.50）を誘導できる。

したがって最終的な解は、式（1.44）の仮定の仕方には依らない。

1.3.2 バッキンガムのπ定理

式（1.43）のように物理量のべき乗の積で表す前項のレイリーの方法をより一般化すると、次式と

なる。

A=f A, A, A, ⋯, A （1.51）

前節の例では、未知量 A（抵抗 D）を規定するのに、ρ、 μ、U 、dという 4つの物理量が用いられ

た。したがって、未知量まで合わせて物理量の数は n=5となる。一方、基本量の数はm=3である。

結果的に、前節の例では式（1.50）のように左辺と右辺に 1つずつの無次元量が出てきたので、無次

元量の数は 2個である。実は、この無次元量の数は先ほどの例で用いた物理量の数 nから基本量の数

m を引いた数に等しくなる。これを一般化したのがバッキンガムのπ定理（Buckinghamʼs pi

theorem）である。式（1.51）のように未知量を含めて n個の物理量が対象とする現象に関係してい

るとき、M-L-Tなどの基本量の数をmとすれば、n−m個の無次元量の関係が次式のように表わさ

れる。
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π=φπ, π, …, π （1.52）

前節の例では、現象を規定する物理量の数が n=5で、基本量の数がm=3であるから、無次元量の数

は、n−m=2となる。したがって、2個の無次元量によって現象が規定されることになり、関係式は

π=φπ （1.53）

となる。無次元量 π,πは以下のようにして求められる。

現象を大きく規定する量は、幾何学的物理量、運動学的物理量、流体特性量なので、上記例の物理

量のうち、直径 d、流速 U ならびに流体の密度 ρをそれぞれ代表量に選び、無次元量 π, πを次式の

ように仮定する。

π=dU ρD

π=dU ρμ
（1.54）

πに関する次元方程式は、

MLT=L
LT

ML
MLT

πに関する次元方程式は

MLT=L
LT

ML
MLT

となるので、それぞれ、指数に関する連立方程式を解いて、

π=D/ρU d  , π=Ud/ν （1.55）

が得られる。すなわち、式（1.53）は

D

ρU d  =φ
Ud

ν 
となり、式（1.50）と一致する。バッキンガムのπ定理では、現象を規定する無次元量が直ちに求め

られる点が特徴である。

1.4 一次元流れの基礎式

この節では、水理学の中で基礎となる一次元の流れの基礎式を見ていく。ある方向に卓越した流れ

の場においては、流れの向きに沿って座標系をとったときに、その方向の流速や流量が分かれば流れ

の概略をつかむことが可能である。また、この節の後半では、水理学の中で最も重要と思われるベル

ヌーイの定理について概説する。同定理は、力学におけるエネルギー保存則に相当するものである。

1.4.1 流れの種類

我々の身の周りに見られる流体の流れは、大気や海洋などの巨大な流体の運動から、河川や水路な

どの水の流れ、建物内の空気の流れなどのように少しスケールが小さくなるもの、あるいは我々の体

内の毛細血管の中の血液の流れなどのミクロなものまで千差万別である。これらの流れは、時間とと

もにたえず変動するものや、時間変動はないものの場所によって流速や圧力が変化する流れも存在す
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る。流れの時空間的な様相を大局的に言い表わす言葉として、流れの場、あるいは流れ場がある。時

間的にも空間的にも変動する流れを非定常流（もしくは不定流）（unsteady flow）と呼ぶ。一方、いろ

いろな水理量（流速や流量、水深、圧力など）が時間的に一定であるものを定常流（もしくは定流）

（steady flow）と呼ぶ。定常流でも場所ごとに水理量が異なる流れを不等流（non-uniform flow）、定

常流でかつ主流方向の場所ごとにも水理量が変化しない一定の流れを等流（uniform flow）という。

一方、別の流れの分類法では、流速が大きく流体同士が複雑に混ざり合うような流れとゆっくり規

則正しく層状に流れていく流れに分けられる。前者を乱流（turbulent flow）、後者を層流（laminar

flow）と呼ぶ。この 2種類の流れが存在し、どちらの流れであるのかが 1つの無次元パラメータで決

まるということを定量的に示したのがオズボーン・レイノルズ（Osborne Reynolds）である。流体中

に含まれるさまざまな物質や物理量は、流体中を拡散（diffusion）して広がっていくが、乱流の場合は

より短時間でその拡散が広範囲に行われるという性質がある。

また、水の流れの中でも水面が大気に触れて自由水面（free surface）をもつ流れを開水路流れ（open

channel flow）といい、逆に大気に触れない上水道などのパイプの中の流れを管路流れ（pipe flow）と

呼ぶ。ただし、下水道などではパイプ内の流れであっても場合によって自由水面を有する流れになる

場合があり、その時は管路流れから開水路流れに切り替わる。開水路流れでは、流れが速くなると下

流の影響が上流に伝わらなくなる場合が起こり得る。このような流れを射流（super-critical flow）と

いい、逆に比較的ゆっくりと流れ、下流の影響が上流に及ぶ流れを常流（sub-critical flow）と呼ぶ。

流体自身の性質に着目した場合、流体の粘性を考慮する必要のある流体（例えば実在流体）のこと

を粘性流体（viscous fluid）といい、実在はしないが粘性を持たない理想的な流体のことを完全流体

（perfect fluid）あるいは非粘性流体（inviscid fluid）と呼ぶ。また、流体の圧縮性に関する分類として

は、圧力により縮む流体を圧縮性流体（compressible fluid）、縮まない流体を非圧縮性流体（incom-

pressible fluid）と呼ぶ。水は圧縮率が小さいので、多くの場合非圧縮性流体として取り扱って良い。

一方、空気は圧力によって容易にその体積を変えられることから、圧縮性流体の代表と見ることがで

きる。

1.4.2 流線、流管および流跡線

水の流れや空気の流れは、通常は無色透明であるから我々の目には見えない。しかし、水の流れの

場合に、例えば水面にアルミニウムの粉を蒔いて流せば、水面付近の流れや渦を観察することができ

る。空気中では煙などを発生させると流れの様子を詳細に見ることができる。このようなアルミニウ

ムや煙のことをトレーサーと呼んでいる。トレーサーやその他の方法によって流れを目に見えるよう

にすることを流れの可視化（flow visualization）と呼ぶ。近年は、この流れの可視化と同時に画像解析

によって面的なあるいは立体的な流れの場を計測する PIV（particle image velocimetry）などの技術

も発達してきている。我々の身近な所で見ることのできる可視化された流れとしては、衛星画像で見

られる雲の模様や煙突から出てくる煙の行方などがある。
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実験室における流れの可視化実験では、水面にアルミニウムの粉を浮かべて真上からカメラで露出

時間を比較的短くして撮影することで、瞬間的な流れの場を目に見える形で把握することができる。

このとき、アルミニウムの粉末の短い時間の移動を順につなげることで、その瞬間の流れの様子を表

わすことができる。このようにして作成できる曲線を流線（stream line）と呼ぶ。流線の線分ベクト

ル dr

dx,dy,dzとその瞬間の速度ベクトル v


u,v,wが平行であることから、dr


=kv


と書け（kは比

例定数）、その結果次式の流線の方程式が得られる。

dx

u
=

dy

v
=

dz

w
（1.56）

さらに、流体内部に任意の閉曲線を考え、その閉曲線を通過する流線をつなげれば、1つの管を形成す

る。この管のことを流管（stream tube）と呼ぶ。流速ベクトルはこの流管から外に出ることも中に入

ることもないので、流管は、仮想的な流れの通り道を示していることになる。管路や開水路そのもの

も 1つの流管に対応していることになる。

一方、流体内部のある流体粒子 1点に着目して、その移動を長い時間にわたって追跡して計測され

るのが、流れの道筋あるいは流跡線（パスライン、path line）である。この流跡線を流れの可視化に

よって求めるには、上記の流線のときよりもさらに長い露出時間で写真撮影することが必要である。

このとき、流体粒子が動く距離は dr

=v


dtと表せるので、

dx

u
=

dy

v
=

dz

w
=dt （1.57）

が得られる。これが流跡線の方程式である。式（1.56）と式（1.57）は似ているが、式（1.56）が瞬

間的な流体全域の速度ベクトルの方向を表しているのに対し、式（1.57）では、ある時刻の流線に乗っ

て動いた流体粒子は次の時刻には別の流線によって運ばれ、それを繰り返すことによって流跡線が形

成される。もちろん、流れが定常であれば、両者は一致することになる。流線のように、流体全域を

一望のもとに眺め、それぞれ固定された地点における各時刻ごとの流れを観察する方法をオイラー

（Leonhard Euler）の方法と呼ぶ。一方、1つの流体粒子に着目して時々刻々の位置を追いながらその

流体粒子の特性を調べていく方法がラグランジュ（Joseph Louis Lagrange）の方法である。

また、流れの可視化のために、ある 1点からトレーサーを定常的に放出して下流側にできる線のこ

とを流脈線（痕跡線、streak line）と呼ぶ。これは、煙突から出てくる煙によってできる線や水中で色

素を一点から定常的に放出したときに形成される曲線であり、この流脈線は、上記の流跡線と似て非

なるものである。なぜなら、流跡線では、1つの流体粒子に着目して線が形成されるが、流脈線ではそ

の線上のそれぞれの流体粒子は、同じ点を通過した流体粒子であるという共通点はもつものの、それ

ぞれ異なる流体粒子から成っている。流れが定常であれば、流脈線は上記の流線、流跡線とも一致す

る。

【例題 7】 aを定数として、u=ax、 v=−ay、w=0で与えられる流線を求めよ。
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［解答］式（1.56）に代入すれば、

dx

ax
=

dy

−ay

これを解けば、

log x =−log y +C

∴ log x +log y =log x  y =C

∴ xy=C'=const.

が得られる。

1.4.3 フラックス

流体のような連続体の運動を取り扱う際には、質点系の力学とは全く異なる流体特有の方法・概念

がある。その典型的なものがフラックス（流束）（flux）である。図 1.13 には、流体中の任意の面にお

ける微小面積 dSを通過する流速ベクトル v

を示している。一般的に

v

は dSに垂直ではないので、dSに垂直な大きさ 1の単位法線ベクト

ル n

を考えると、ベクトル v


を n


方向に投影した速度成分の大きさ

は、

v=v

∙n

=n


 v

cos α=v


cos α

である。ここで、αは、v

と n


のなす角度である。dSが微小なので、

ベクトル v

は dS上で均一と見なせるから、dSを単位時間に通過する

流体の体積、すなわち流量は

dQ=vdS=v

∙n

dS （1.58）

と表わせる。さらに、流体中に含まれる任意の物質の濃度や物理量の大きさを θとすれば、単位時間

に dSを通過する物質や物理量の輸送量であるフラックス（流束）は、

θdQ=θv d S=θ v

∙n

dS （1.59）

となる。dSは流体中の任意の面の微小面積であるので、流体中の任意の曲面 Sを通過する流体の流

量は


dQ=

v d S=
v

∙n

dS （1.60）

であり、曲面 Sを通過する任意の物質や物理量のフラックス（流束）は、


θdQ=

θv d S=
θ v


∙n

dS （1.61）

となる。
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1.4.4 連続の式

ここでは、流れの卓越する方向に座標軸をとる。すな

わち、図 1.14 のように流線に沿って曲線座標 sをとり、

流体中の任意の閉曲線を通過する流線で形成される流管

を考える。流管の断面Ⅰにおける面積を A、流速を v、

流体の密度を ρ、断面Ⅱにおける面積、流速、流体の密

度をそれぞれ A, v, ρとおく。流管内部の流体は、流

れが定常であればその内部を流れるから、結果的に断面

Ⅰから単位時間に流入する質量フラックスは断面Ⅱから

単位時間に出ていく質量フラックスと等しくなる。

ρAv=ρAv （1.62）

断面の設定は任意であるから、流管について

ρAv=ρQ=一定 （1.63）

が得られる。ここに、Qは考えている流管を流れる流量である。

特に、非圧縮性流体の場合は、ρ=ρ=ρ（＝一定）とおけるので、式（1.62）は

Av=Av （1.64）

となる。この場合も流管における断面の設定は任意であるから、

Q=Av=一定 （1.65）

が得られる。式（1.63）と（1.65）は、定常 1次元流れの連続の式（equation of continuity）と呼ばれ、

水理学・流体力学において欠かせない流れを規定する基礎式の 1つである。

1.4.5 ベルヌーイの定理

ベルヌーイの定理は、1738 年に出版され

たダニエル・ベルヌーイ（Daniel Bernoul-

li）の本で初めて見出された、定常流の場

合の流体のエネルギー保存則である。より

一般的なエネルギー保存式の誘導は、3 次

元の完全流体（非粘性流体）に関するオイ

ラーの運動方程式を積分する形で導出され

るが、ここでは簡単のため、流管を用いた

誘導を示す。

図 1.15 に示すように、重力場において

完全流体の定常流を考え、流管内の流線に直交する任意の断面を図のようにⅠ、Ⅱとおく。また、そ
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れぞれの断面における断面積、流速、圧力、水平な基準面から測った高さを、各々 A、v、 p、z、

ならびに A、v、 p、zとおく。簡単のため密度は共通で ρとする。断面Ⅰ、Ⅱでは、それぞれの

流速に単位時間をかけた v、 vの距離だけ流体が単位時間に移動する。したがって、断面Ⅰにおい

て単位時間に入ってくる流体の質量は、

m=ρAv

であり、単位時間に入ってくる運動エネルギーと位置エネルギーはそれぞれ、

1
2
mv


=

1
2
ρAvv


, mgz=ρAvgz

と書ける。さらに、単位時間の圧力による仕事量は、

pAv

となる。一方、断面Ⅱにおいても同様に運動エネルギー、位置エネルギー、ならびに圧力による仕事

量が断面から出て行く。しかしながら、粘性のない完全流体ではエネルギーが保存されるので、両断

面におけるこれらの量の和も保存されて次式が得られる。

1
2
ρAvv


+ρAvgz+pAv=

1
2
ρAvv


+ρAvgz+pAv

ここで、連続の式（1.64）から

Av=Av

が成り立つので、上式は以下のように簡単になる。

1
2
ρv

+ρgz+p=
1
2
ρv

+ρgz+p （1.66）

エネルギーを高さで表すために両辺を流体の単位体積重量 γ=ρgで除して、次式が得られる。

v


2g
+z+

p

γ
=

v


2g
+z+

p

γ
（1.66）̓

式（1.66）̓は流管のどの断面においても成り立つので、

E=
v

2g
+z+

p

γ
=一定 （1.67）

となる。式（1.67）をベルヌーイの定理（Bernoulliʼs theorem）と呼び、エネルギーが流線上で保存さ

れることを示している。ここで、Eは単位体積重量あたりの流体のもつ全エネルギーを表わすが、長

さ（高さ）の次元を持つことから、全水頭（total head）と呼ばれる。また、式（1.67）右辺の各項は、

それぞれ速度水頭（velocity head）、高度水頭（elevation head）、圧力水頭（pressure head）と呼ばれ

ている。

【例題 8】水槽の底あるいは側壁に小穴を空けて水を放流するものをオリフィス（oriffice）という。図

-E のようなオリフィスから水が流出している。タンクには水が供給されて水位は一定に保たれてい

る。このとき、ベルヌーイの定理を用いて、オリフィスから流出する水の流速を求めよ。
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［解答］図-Eに示すように、オリフィスから流

出する流線の 1つに着目し、上流側にA点、オ

リフィスから流出した直後の断面が最も小さく

なっている点をB点とする（この縮流した断面

をベナコントラクタ（vena contracta）と呼び、

この断面における流速ベクトルは互いにほぼ平

行となっている）。このとき、ベルヌーイの定

理、式（1.67）をこの 2点に適用する。各々の

点における流速、基準面からの高さ、圧力を各

点の添え字を付けて示すと、式（1.67）は以下

のようになる。

E=
v



2g
+z+

p

γ
=

v


2g
+z+

p

γ

A点における速度水頭
v


2g
は、オリフィスの断面積が水槽の断面積に比べて小さいときには、B点の

速度水頭に比べて無視することができる。また、静水圧の式より A 点における圧力はゲージ圧で

γhと表されるのに対し、B点では大気に触れているため圧力ゼロである。したがって、上式は以下

のように簡単になる。

E=z+h=
v



2g
+z

よってB点における流速は

v= 2gz+h−z= 2gH

ちなみにオリフィスからの流量は上式にオリフィスの断面積 aを乗じて求めると過大評価となる。

これは流体運動の慣性によって流出する断面積が一旦縮流して減少するためである。ベナコントラク

タにおける断面積はオリフィスの断面積に対して 6割から 7割程度の大きさでしかなく、この縮流を

考慮した流量係数（coefficient of discharge）Cを導入してオリフィスからの流出流量は次式で与えら

れる。

Q=Ca 2gH

Cの大きさは 0.6〜0.64 程度である。

1.4.6 運動量の定理

運動量はエネルギーと異なりベクトル量である。ある質量 mに働く力のベクトルを F

、加速度を

a

とすると、ニュートンの運動の第二法則から、

F

=ma


=m

dv


dt

第 1章 水理学の基礎28

図-E

a  

  

 

 

 Az

Bz  

Ah

H



となるが、変形して次式となる。

F

dt=mdv



したがって、単位時間に速度が v

から v


に変化したとすれば、

mv

−mv


=F


（1.68）

が得られる。一見式（1.68）の両辺の次元が異なって見えるが、実際は右辺に単位時間がかかってい

る流体の場合も、ある流体の塊（コントロール・ボリュームと呼ぶ）を考え、これに働く力のベクト

ルを F

とおけば、流体塊に作用する力 F


により運動量に変化が生じることになる。流体塊として、

図 1.15 のような断面Ⅰ、Ⅱで仕切られた流管を考える。流体の出入りは断面Ⅰと断面Ⅱからのみで

あるから、流体塊の運動量の変化は、出入りする断面Ⅰ、Ⅱにおける運動量のみを考えれば良いこと

が分かる。単位時間に流入・流出する質量が ρQとおけることから、断面Ⅰから内部へ入ってくる運

動量と断面Ⅱから外へ出て行く運動量による単位時間の運動量の変化量は、

ρQv

−v


 （1.69）

と表わせる。一方、流体塊に作用する力としては、いくつか考えられるが、1.1 節で述べた通り、1つ

は内部の流体塊の質量に直接遠方から作用する質量力 F

で、もう一つは、流体塊の表面に接触して

作用する表面力 F

である。

したがって、運動量の定理（momentum theorem）が次式のように得られる。

ρQv

−v


=F


＋ F


 （1.70）

式（1.70）はベクトル形式で記述しているので、実際の計算の際には x、 y、 z方向などの成分に分

けて計算する必要がある。

運動量の定理の特徴は、流体塊内部で大きなエネルギー損失が起こっていようといまいと、流体塊

を包む境界における運動量の出入りを押さえておきさえすれば、この流体塊に働く力を求めることが

できるという点にある。また、複数の作用する力と出入りする運動量の情報をもとに、流体塊に作用

する未知の力を求めることも可能である。

【例題 9】図-Fのように、流量 Qを送水している

管路の途中に漸縮部分があり、直径 Dの管路と

直径 Dの管路が結ばれている．この漸縮部分に

入る直前の断面Aにおける圧力水頭が hである

とき、次の量を求めよ。ただし、管路の摩擦損失

は無視し、管軸は水平であるとする。

a）直径 Dの管路に入ってから直ぐの断面Bにおける圧力水頭 h

b）漸縮部分を通過することにより生ずる流れの運動量の変化量 ΔM

c）断面変化区間の水が受ける管軸線方向の力 F
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［解答］

a） 断面Aと断面Bにおける流速、圧力、基準面からの高さを、それぞれ v、p、zならびに v、

p、 zとおく。管軸を通過する流線上の断面Aと断面Bにおいてベルヌーイの定理を適用すると、

管軸が水平で z=zであることから次式が得られる。

v


2g
+

p

γ
=

v


2g
+

p

γ
（1）

また、連続の式（1.64）もしくは（1.65）より

Q=Av=
πD



4
v=Av=

πD


4
v

よって

v=
4Q

πD


, v=
4Q

πD


（2）

断面Aにおける圧力水頭が与えられている
p

γ
=hので、それらを式（1）に代入すれば

h=
p

γ
=

1
2g 

4Q

πD




−
4Q

πD




+h=
8Q

π g

D
−D



D
D




+h

b） 断面Aから流入する単位時間当たりの運動量は、流体の密度を ρとおけば

ρQv

同様に断面Bから出て行く運動量は

ρQv

したがって、単位時間の運動量の変化量は

ΔM=ρQv−v=ρQ
4Q

πD


−
4Q

πD

=

4ρQ

πD
D




D
−D



で与えられる。

c） 式（1.70）より流体の運動量の変化量は、流体が受けた力に等しい。断面Aと Bの間にある流体

を考えることとし、流体が両断面で受ける圧力による力ならび流体が漸縮管から受ける力 F を考慮

すると次式が得られる。

F+p

πD


4
−p

πD


4
=ΔM

したがって、流体が漸縮管から受ける力は

F=−p

πD


4
+p

πD


4
+ΔM

=−γh

πD


4
+γ

8Q

π g

D
−D



D
D




πD


4
+γh

πD


4
+

4ρQ

πD
D




D
−D



=
ρghπ

4
D

−D
+

2ρQ

πD
D




D
−D



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