基礎から実践 構造力学

^{編著} 大垣 賀津雄 ^{著者} 大山 理 石川敏之 · 谷 宮 望 剛

理工図書

白	끼	敏之
公		望
놂	둒	
舌	Г	Imili

理工図書

第1章 構造力学と構造設計

1.1	はじめに	1
1.2	構造力学とは	2
1.3	建設構造設計	3
1.4	本書の構成	4

第2章 力のつり合いと支点反力

2.1	カ	」のつり合い	5
2.2	構	造モデルと荷重	6
2.3	支	点反力	9
2.3	8.1	支点の種類・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
2.3	8.2	外力(力とモーメント)の符号の約束	0
2.3	3.3	支点反力の求め方	0

第3章 断面力の求め方

3.1	断面力とは
3.2	断面力の符号 ····································
3.3	断面力の計算法 ····································

第4章 トラス構造の解法

4.1	トラス構造の種類・・・・・・	·47
4.2	節点法による解法	•52
4.3	切断法による解法	· 55

第5章 応力度の計算

5.1	構	造材料の力学的性質
5.2	2 断	面諸元 ····································
Ę	5.2.1	断面1次モーメント
Ę	5.2.2	断面 2 次モーメント
5.3	3 部	3材の応力度 ·······68
Ę	5.3.1	軸力による直応力度
Ę	5.3.2	曲げによる直応力度······70
		はりに仕じて止し転亡力 座 72

第6章 はりのたわみの計算

6.1	は	りの	微分フ	5程式	の導出	4	•••••		 	 	77
6.1	l.1	はりの	の曲げ	応力…			•••••		 	 	77
6.1	1.2	はりの	の曲率				•••••		 	 	
6.1	1.3	微小領	領域に	おける	力のつ	り合い…			 	 	
6.1	l.4	集中荷	苛重を	受ける	はり…				 	 	
6.1	l.5	微分フ	方程式	の整理	と解法				 	 	
6.1	1.6	境界纟	条件…						 	 	
6.2	2	階の後	敞分方	7程式	を用い	る解法	(式	(6.15))	 	 	
6.3	4	階の御	敞分方	7程式	を用い	る解法	(式	(6.19))	 	 	
6.4	4	階の後	敞分方	7程式	を用い	る解法	(式	(6.20))	 	 	
6.5	弾	性荷	重法	(モー	ルの定	王理)…			 	 	
6.5	5.1	物理量	量の関	係					 	 	

iii

6.5.2	共役はり	
6.5.3	弾性荷重法(モールの定理)	による解法の手順

第7章 影響線

7.	1	影響	譻線	の必要	要性		•••••				•••••	 	 •••••	•••••	109
7.	2	影響	譻線	、影響	響線図と	とは	•••••					 	 		111
	7.2.2	1 1	よりく	の影響	線		•••••					 	 		111
	7.2.2	2	、ラン	スの影	響線		•••••					 	 		113
7.	3	影響	響線	の利用	用方法⋯		•••••					 	 		117
	7.3.1	1	を軸く	の移動	荷重に対	すする	応答を	求める	。 場合·			 	 		117
	7.3.2	25	 	荷重が	作用する	る場合	の応答	を求め	る場	合		 	 		119

第8章 エネルギー法

8.1	仕	事とひずみエネルギー	121
8	.1.1	軸力を受ける部材のひずみエネルギー・・・	122
8	.1.2	曲げモーメントを受ける部材のひずみエネルギー・・・・	123
8	.1.3	せん断力を受ける部材のひずみエネルギー	124
8	.1.4	部材に蓄えられる全体のひずみエネルギー・・・・	124
8.2	相	反定理	124
8.3	饭	想仕事の原理と単位荷重法	125
8	.3.1	軸力がなす内部仮想仕事・・・・・	126
8	.3.2	曲げモーメントがなす内部仮想仕事	128
8	.3.3	せん断力がなす内部仮想仕事	129
8.4	・カ	スティリアノの定理と最小仕事の原理	129
8	.4.1	カスティリアノの定理の証明・・・・・	129
8	.4.2	カスティリアノの定理を用いた解法	130
8.5	余	力法	131
8	.5.1	弾性方程式と余力法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	131
8	.5.2	余力法を用いた不静定力の解法	133
8.6	最	小仕事の原理	135

iv

8.6.1	最小仕事の原理・・・・・	135
8.6.2	最小仕事の原理を用いた不静定構造の解法	136

第9章 不静定構造物の計算

9.	17	「静定次数		141
	9.1.1	はりの場合・		141
	9.1.2	トラスの場合	습······	143
9.	2 1	わみ角法		145
	9.2.1	たわみ角法の	の定式化	146
	9.2.2	たわみ角法	(集中荷重を受ける両端固定はり)	149
	9.2.3	たわみ角法	(集中荷重を受ける両端固定連続はり)	152
	9.2.4	たわみ角法	(集中荷重を受けるラーメン構造)	155

第10章 柱と座屈

10.1	柱と座屈	161
10.2	短い柱	162
10.2.	1 短柱に生じる応力の計算	164
10.2.	2 核の計算	164
10.3	長い柱	165
10.3.	1 座屈荷重	165
10.3.	2 細長比パラメータと有効座屈長	167
10.3.	3 座屈荷重の計算	168
10.4	板の座屈	169
10.4.	1 板の座屈応力	169
10.4.	2 板の座屈応力の計算	171

第11章 鉄筋コンクリート

11.1	鉄筋コンク	リー	- ト構	告	173
------	-------	----	------	---	-----

11.1.1	コンクリート材料	173
11.1.2	補強鉄筋	176
11.1.3	鉄筋コンクリート柱	178
11.1.4	鉄筋コンクリートはり	180
11.2 曲	1げ応力度の計算	181
11.2.1	計算上の仮定	181
11.2.2	曲げ応力度の計算	182
11.3 (d	りの終局強度	187
11.3.1	計算上の仮定	187
11.3.2	等価応力ブロック法	187
11.3.3	終局曲げモーメントの計算	189

第 12 章 鋼構造

12.	1	鋼構造	193
12.	2	鋼部材の圧縮強度	194
12	2.2.1	圧縮を受ける柱の基準圧縮強度曲線(全体座屈)	195
12	2.2.2	2 横倒れ座屈に対する基準耐荷力曲線(全体座屈)	195
12	2.2.3	3 圧縮応力を受ける板の基準圧縮強度曲線 (局部座屈)	196
12	2.2.4	4 基準圧縮強度の計算例	197
12.	3	鋼桁および合成桁の断面に生じる応力分布	198
12.	4	崩壊荷重	201
12	2.4.1	鋼の応力-ひずみ関係	201
12	2.4.2	2 降伏モーメントと全塑性モーメント	202
12	2.4.3	3 崩壊荷重の計算	205
付釒	录 ·		212
問是	夏解	答	216
索引	; ·		223

第1章 構造力学と構造設計

本書は大学課程の専門基礎授業に適した,講義用テキストとしてまとめ ている。また,本書は就職後も設計など業務で参考になるように,鉄筋コ ンクリートや鋼構造の設計における基礎的事項などの情報を掲載してお り,社会人になっても利用できるものとしている。備考欄には専門用語の 説明,英訳,単位の説明,実務における計算方法の適用などの基本情報を 掲載している。

1.1 はじめに

建設構造物が備えるべき要件に、古くから「用・強・美」という概念が

ある。これは,建築^①やインフラ 構造物^②が要求されている機能を 満たし,長期間の使用に耐える強 度と耐久性を持ち,かつ美しいと 感じなければならないという思想 である。インフラ構造物の歴史的 遺産としていまなお残っている石 橋(図1.1)などは,長い年月を 経たいまでもその機能(用)を果 たし,耐久性などの安全性(強) が確保されている。しかもその美 しさはその地域の風景とマッチン グしている。

近年,高層ビルなどの建築(図 1.2)や橋梁(図1.3)などのイン フラ構造物に用いられている材料 は、コンクリートや鋼材が主流で ある。都市や市民の暮らしに役立 つ安定した空間を確保するため

図 1.1 スターリ・モスト

図 1.2 スパイラルタワーズ

 Architecture は建設物 を造る行為(過程,技 術)を意味し,Building は建設物を意味する。

2 Infrastructure

インフラ構造物は主に 社会生活に必要な公共 構造物を意味する。 2

- Stress
 応力は部材に生じる内 力(応力度)を意味す る。建築分野では部材 に生じる力(断面力) のことを単に応力とい う場合がある。
- ④ Deformation
 外力が加わった際に生じるたわみなどの応答をいう。
- ⑤ Structural Mechanics
- ⑥ Materials Mechanics 材料力学は、材料の変 形,破壊特性を知るた めの学問を意味する。
- ⑦ Digital Transformation デジタル技術を活用 し、人々の生活や業務 を効率よい状態へ変革 する技術である。建設 分野では、リモート建 設、BIM,CIM、VR、 3D プリンタ建設、モ ジュール化、AI 診断、 スマートシティなどの 技術導入をいう場合が 多い。
- (8) Strain

単位長さあたりの変形 量を意味する。構造力 学上重要な指標である。

 ① Load-bearing Performance 耐荷性能は、対象とし ている建設部材が終局 状態に至る強度特性を 第1章 構造力学と構造設計

に,これらの材料を用いた構造物 に外力が加わったときの**応力**[®]お よび**変形**[®]を計算して,その安全 性を確認する必要がある。本書は そのための基礎知識を得て,これ らの設計,施工および維持管理業

図 1.3 レインボーブリッジ

務に役立つようにまとめられたものである。

1.2 構造力学とは

構造力学[®]は建築物,橋梁などのインフラ構造物が,供用時の荷重を受けたときに生じる応力や変形などを計算するための理論体系である。主に 建築物,橋梁,船舶,航空機などの構造物に外力が加わったときに各部材 に生じる内力と変形を分析するために構造力学が用いられる。建築工学や 土木工学の建設分野では根幹を成す学問分野であり,専門基礎の授業とし て位置付けられている。単一部材での分析を基礎とする材料力学[®]とは区 別されているが,重なり合う要素が多くあり,本書では材料力学分野もあ る程度カバーできるようにしている。

建設分野で構造力学を学ぶ目的は以下の通りである。

(1)構造力学は、建物や橋などの構造物の設計や構造解析に必要な基礎知識を得る。

(2) 構造力学を学ぶことで、構造部材の応力や変形、構造物全体の耐荷性 能などを知る。

(3) 効率的な設計,施工管理,点検,診断および DX[®]などの業務を行う ための知識を得る。

構造力学は建設分野において非常に重要な役割を担っている建築物,橋 梁,鉄塔,ダム,トンネルなどの構造物の設計と解析に欠かせない知識で ある。構造物はさまざまな荷重や外力にさらされ,それに対して安全かつ 効率的に応答させる必要がある。構造力学を理解することで,構造の安定 性や応力度,**ひずみ[®]の分布を予測し,**設計や解析に基づいた最適な構造 物を実現することができる。市民の安全を守るために非常に重要であり。 外力に対する**耐荷性能[®],耐震性能[®]**などの安全性を確保することができ る。

本書は、構造力学の基礎知識の学習を行うことを目的として発刊したも

のである。構造物と構造力学との関係をわかりやすく説明し,実際の構造 物への力学的な挙動を推定するために重要な学問である。本書を通じて修 得した構造力学の理論を,実際の構造物や試験体に適用して,実験や計測 を行って荷重の受け方や応力分布などを観察することができれば,より興 味が深まって一流の技術者に成長するであろう。

1.3 建設構造設計

表1.1 に示す通り,建設工事における発注者の役割は,プロジェクトの 計画と条件を決定し,完成させて供用できるまでの全体管理を行うことに ある。発注者は建設物の使用目的に応じた品質基準,工事予算,工期,安 全基準,および環境基準などを設定して,建設完了までの計画と契約条件 を加味して工事発注を行うこととなる。

表 1.1 建設工事の分担

発注者	設計者	建設者
国土交通省, 地方自治体	コンサルタント,設計事務所	建設会社
道路会社,鉄道会社	(意匠設計者,構造設計者,	専門工事会社
建築主など	設備設計者)	

コンサルタントや設計事務所は,建設工事に必要な技術的な助言と専門 知識を提供し,企画段階では意匠設計や基本設計を行い,建設着手直前に は具体的な構造設計を行う。この際に構造計算書,図面などを成果品とし て提示して,発注者の承諾を得る。建築構造物では構造設計者と設備設計 者が異なる場合もある。インフラ構造物ではコンサルタントがこれらの業 務を行っている。

工事を受注した建設会社は,実際の建設作業を担当する。施工図や仕様 にしたがって工事を進め,安全や環境に配慮しつつ,工期内に完成させる ことを目指して**施工管理**^①する。

建設構造設計において,国土交通省告示,道路橋示方書,鉄道構造物等 設計標準,建築基準法などの基準や制度にしたがい,実施詳細設計を行 う。この際に,構造力学の理論に基づいた構造計算,構造解析を実施して 設計計算書を作成する。その設計した部材断面を図面化して,製作,施工 できるようにすることが構造設計者の重要な役目となる。

意味する。

⑥ Earthquake Resistance
 地震力に対する耐荷性
 能を意味する。

Construction

Management

建設分野の施工管理と は安全Safety,品質 Quality,工程Delivery, 原価Costの4項目の 管理を行うことであ る。5つめの管理項目 として環境Environment を含める場合がある。

1.4 本書の構成

本書では各章を**表 1.2** に示すように構成し、構造設計を行う際に必要な 情報を学ぶことができる。

表 1.2 本書の構成

F1	
第1章 構造力学と構造設計	概論,構造力学,建設構造設計,本書の構成
第2章 力のつり合いと支点反力	力のつり合い,構造モデルと荷重,支点反力
第3章 断面力の求め方	断面力とは,断面力の符号,断面力の計算法, 静定ラーメン
第4章 トラス構造の解法	トラス構造の種類,節点法による解法,切 断法による解法
第5章 応力度の計算	構造材料の力学的性質,断面諸元,部材の 応力度
第6章 はりのたわみの計算	たわみとたわみ角, 微分方程式を用いる方 法, モールの解法 (弾性荷重法)
第7章 影響線	影響線の必要性,影響線図,影響線の利用 方法
第8章 エネルギー法	仕事とひずみエネルギー,相反定理,仮想 仕事の原理と単位荷重法,カスティリアノ の定理,余力法,最小仕事の原理
第9章 不静定構造物の計算	不静定次数、たわみ角法
第10章 柱と座屈	柱と座屈, 短い柱, 長い柱, 板の座屈
第 11 章 鉄筋コンクリート	鉄筋コンクリート構造,応力度の計算,は りの終局強度
第 12 章 鋼構造	鋼構造,鋼部材の圧縮強度,鋼桁および合 成桁の断面に生じる応力分布,崩壊荷重

第2章 力のつり合いと支点反力

構造物,その代表例である橋梁(きょうりょう)には,自重,車や列車 などの移動荷重,さらに,温度変化や地震力など種々の荷重が作用する。 設計を行うに際し,まず,これらの荷重に対して,構造物をしっかりと支 える必要がある。

本章では、力のつり合い条件式に基づいて、下から支える力、つまり、 支点反力の求め方を説明する。

2.1 力のつり合い

図 2.1 1 点に作用しない多くの力のつり合い

図 2.1 に示す1点に作用しない多くの力[®]が作用する力のつり合い条件 式は、以下のように与えられる。

水平 (<u>horizontal</u>) 方向に作用するすべての力がつり合っている。 $\sum H_i = 0$ (2.1) 鉛直 (<u>vertical</u>) 方向に作用するすべての力がつり合っている。 $\sum V_i = 0$ (2.2) 回転させようとするすべての力,つまり、モーメント (<u>moment</u>) がつ り合っている。

$$\sum M_i = 0 \tag{2.3}$$

すなわち,『すべての力の水平分力の代数和,鉛直分力の代数和ならび に任意点に関するモーメントの代数和がそれぞれ0になる』ということ である。 物体の運動状態に変化 (速度の変化)を生じ させる原因となるもの を力(Force)という。 構造力学では、力の大 きさ、方向に加えて作 用点についても考える 必要がある(力の三要 素)。

> 力の単位は,国際単位 系(SI単位系)が用 いられ,lkgの質量に lm/s²の加速度を生じ させる力をlN(ニュー トン)と定義している。 lN=lkg×lm/s²

> モーメントは、力P と回転中心から作用線 までの距離 a の積で表 される M=Pa

2 Concentrated Load

③ Distributed Load

・集中荷重²

集中荷重とは、図2.2に示すように、全重量が1点に集中して作用 すると仮定できる荷重をいう。

・分布荷重 3

分布荷重とは、図2.3に示すように分布力に相当する荷重で、その 大きさは、単位長さあたりの力で表される。

 一般的に用いられる単 位の例は, kN/m, N/cm などである。 また,等変分布(三角 形)荷重もある。

■ 2.3 等分布荷重^⑤

今後,力のつり合い計算を行うに際し,分布荷重を集中荷重に置き換え る必要がある。そこで,まず,「Varignon (バリノン)の定理」を説明す る。同定理は,「物体に多くの平行な力が作用する場合,ある点に関する それぞれの力によるモーメントの総和は,それらの合力のある点に関する モーメントに等しい」ということができる。つまり,図2.4に示すような 多くの平行な力 *P*₁,…*P*_nの合力*R*の作用線は,これらの力に平行で, その大きさは,式(2.4)で表される。

$$R = \sum_{i=1}^{n} P_i \tag{2.4}$$

また, P_i の任意の1点Oからの長さe, 合力Rのそれをeとすれば, 式 (2.5)が得られ, 合力Rの作用線位置が定まる。

$$e = \frac{\sum_{i=1}^{n} P_i e_i}{\sum_{i=1}^{n} P_i}$$

...

(2.5)

上記の定理を用いて,等分布荷重および等変分布荷重の合力とその作用 位置を求める。

図 2.5 に示すように, 点 O より *x* 離れた位置での微小区間を *dx* とすれ ば, この区間に作用する集中荷重は *qdx* で表される。これを1つの分力と 仮定すると, 合力 *R* は式 (2.6) のように求められる。

$$R = \sum q dx = q \int_0^a dx = qa \tag{2.6}$$

そして, 点 O に関する分力モーメントの総和は式(2.7)で表され, 両 式より作用位置 e は式(2.8)で求められる。

図 2.6 等変分布荷重作用時の合力とその作用位置

図 2.6 に示すように、 点 O より x 離れた位置での微小区間を dx とすれば、この区間に作用する集中荷重は $q\frac{x}{a}dx$ で表される⁶。これを1つの分力と仮定すると、合力 R は式 (2.9)のように求められる。

$$R = \sum q \frac{x}{a} dx = \frac{q}{a} \int_0^a x dx = \frac{qa}{2}$$
(2.9)

 ② 集中モーメント(モー メント荷重)

 $P \xleftarrow{e_1} e_2$

その中で、大きさPが 等しく、向きが反対の平行 な2つの力を偶力(Couple of Force)という。さらに、 $M = Pe_1 - Pe_2 = Pd$ となり、 このモーメントを偶力モー メント(Moment of Couple) という。 そして, 点 O に関する分力モーメントの総和は式(2.10)で表され, 両 式より作用位置 e は式(2.11)で求められる。

$$\sum \mathbf{x} \cdot q \frac{\mathbf{x}}{a} d\mathbf{x} = \frac{q}{a} \int_0^a \mathbf{x}^2 d\mathbf{x} = \frac{q a^2}{3}$$
(2.10)

$$e = \frac{\sum x \cdot q \frac{x}{a} dx}{\sum q \frac{x}{a} dx} = \frac{\frac{qa^2}{3}}{\frac{qa}{2}} = \frac{2}{3}a$$
(2.11)

以上より,等分布荷重および等変分布荷重の合力の大きさは,力の分布 図の面積に等しく,その作用位置は,図形の幾何学的な重心を通ることが わかる。

他にも、集中モーメント(モーメント荷重)という荷重がある^⑦。

2.3 支点反力

2.3.1 支点の種類

(1) ローラー(移動)支点,ヒンジ(回転)支点(図2.7)

ローラー(移動)支点は、鉛直な方向の移動を拘束するが、水平方向の 移動と回転は拘束せず、反力数は鉛直方向1つのみである。一方、ヒンジ (回転) 支点は、鉛直および水平方向の移動を拘束するが、回転は拘束せ ず,反力は鉛直および水平方向の2つとなる。

図 2.7 ローラー(移動)支点, ヒンジ(回転)支点

(2) 固定支点(固定端)(図 2.8)

固定支点(固定端ともいわれる)は、鉛直、水平方向ならびに回転のす べてを拘束し、反力数は、鉛直、水平反力ならびに固定モーメントの3つ となる。

図 2.8 固定支点(固定端)

2.3.2 外力(力とモーメント)の符号の約束

- (1) 水平方向の外力は,右向きに作用するとき**正**,左向きに作用すると き**負**とする。
- (2) 鉛直方向の外力は、上向きに作用するとき**正**、下向きに作用すると き**負**とする。
- (3) 外力によるモーメントは、時計回りに作用するとき**正**、反時計回り に作用するとき**負**とする。

2.3.3 支点反力の求め方

Step-1:

支点の種類に応じて、正しい数の反力を⊕方向に仮定する。

Step-2:

斜め方向の荷重→鉛直および水平分力を求める。

Step-3:

分布荷重→合力の大きさと作用位置を定める。

例題 2.1 集中荷重が載荷された単純はりの支点反力

Step-4 :

力のつり合い条件式 ($\sum H = 0$, $\sum V = 0$, $\sum M = 0$) を用いて, 反力 の大きさと方向を決定する。

Step-5:

検算を行う。

たはりを単純はりと呼ぶ。

問題 2.1

以下の単純はりに作用す る支点反力の値を求めなさ い。

 $A \xrightarrow{C} B$

図2.9に示す通り、ヒンジ支点とローラー支点によって両端を支持され

いま, 点 AB の支間中央(点 C)に集中荷重 P が作用した単純はりの支 点反力を求める。

まず、単純はりに作用する支点反力 (R_A , R_B ならびに H_A) は、同図に示 すように正の向きに仮定する。

次に、つり合い条件式は、以下のように書ける。

 $\sum H = 0 : H_A = 0$

$$\sum V = 0 : \frac{R_A + R_B}{\bot i \hat{p} \hat{z}} - P = 0 \& \vartheta, \quad R_A + R_B = P$$
(a)

$$\sum M_{atA} = 0 : P \times \frac{\ell}{2} - R_B \times \ell = 0 \sharp \vartheta, \quad R_B = \frac{P}{2}$$

点 A まわり 時計回り反時計回り
のモーメント

式 (a) より,
$$R_B = P - R_B = P - \frac{P}{2} = \frac{P}{2}$$

<検算>

$$\sum M_{at B} = 0: R_A \times \ell - P \times \frac{\ell}{2} = 0 \ \text{lm} \ \text{i}, \ R_A = \frac{P}{2}$$

これらの反力の符号は、すべて正である。したがって、反力の向きは、 図 2.9 の仮定通りと判定される。

例題 2.2 斜め方向の集中荷重が載荷された単純はりの支点反力

まず、単純はりに作用する支点反力 (R_A , R_B ならびに H_A) は、図 2.10 に示すように正の向きに仮定する。

例題 2.3 等分布荷重が載荷された単純はりの支点反力

まず,単純はりに作用する支点反力(*R_A*, *R_B* ならびに *H_A*)は, 図 2.11 に示すように正の向きに仮定する。

問題 2.2

以下の単純はりに作用す る支点反力の値を求めなさ い。

問題 2.3

以下の単純はりに作用す る支点反力の値を求めなさ い。

次に,等分布荷重の合力は *ql* であり,作用線の位置は,図2.11 に示す 通りである。

そして、つり合い条件式は、以下のように書ける。

 $\sum H = 0 : H_A = 0$

$$\sum V = 0 \quad : \quad R_A + R_B - q\ell = 0 \quad \downarrow \forall) , \quad R_A + R_B = q\ell$$
 (c)

$$\sum M_{atA} = 0 \quad : \quad q\ell \times \frac{\ell}{2} - R_B \times \ell = 0 \quad \downarrow \ \ell) \quad , \quad R_B = \frac{q\ell}{2}$$

式(c)より、 $R_A = q\ell - R_B = q\ell - \frac{q\ell}{2} = \frac{q\ell}{2}$ <

<体算>

$$\sum M_{at\,B} = 0: \ R_A \times \ell - q\ell \times \frac{\ell}{2} = 0 \ \ \downarrow \ \ \flat) \ , \quad R_A = \frac{q\ell}{2}$$

これらの反力の符号は、すべて正である。したがって、反力の向きは、 図 2.11 の仮定通りと判定される。 例題 2.4 等変(三角形)分布荷重が載荷された単純はりの支点反力

まず,単純はりに作用する支点反力(*R_A*, *R_B* ならびに*H_A*)は, 図 2.12 に示すように正の向きに仮定する。

図 2.12 等変(三角形)分布荷重が載荷された単純はり

次に、AC間および CB 間の等変(三角形)分布荷重の合力は、それぞ れ、 $P_1 = qa/2$ 、 $P_2 = qb/2$ であり、作用線の位置は、図に示す通りである。 そして、つり合い条件式は、以下のように書ける。

 $\sum H = 0 : H_A = 0$

$$\sum V = 0 : R_A + R_B - P_1 - P_2 = 0 \ \text{k} \ \text{i}, \ R_A + R_B = \frac{qa}{2} + \frac{qb}{2} \tag{d}$$

$$\begin{split} \sum M_{atA} &= 0 \quad : \quad \frac{qa}{2} \times \frac{2}{3}a + \frac{qb}{2} \times \left(\ell - \frac{2}{3}b\right) - R_B \times \ell = 0 \quad \text{if } i) , \\ R_B &= \frac{q}{6} \left(2a + b\right) \end{split}$$

式 (d) より,
$$R_A = \frac{qa}{2} + \frac{qb}{2} - R_B = \frac{q}{6}(a+2b)$$

$$\sum M_{at B} = 0: R_A \times \ell - \frac{qa}{2} \times \left(\ell - \frac{2}{3}a\right) - \frac{qb}{2} \times \frac{2}{3}b = 0 \ddagger 0,$$

 $R_A = \frac{q}{6} \left(a + 2b \right)$

これらの反力の符号は、すべて正である。したがって、反力の向きは、 図 2.12 の仮定通りと判定される。

例題 2.5 斜め方向の集中荷重と集中モーメントを受ける片持ちはり

図2.13に示す通り,一端を固定支点にし,一端を自由端とした,つまり,反力が生じないはりを片持ちはりと呼ぶ。

まず,片持ちはりに作用する支点反力 (R_A , H_A ならびに M_A) は,同図 に示すように正の向きに仮定する。

図 2.13 斜め方向の集中荷重と集中モーメントを受ける片持ちはり

次に,点Cに作用している集中荷重を,水平および鉛直力に分解する。 そして,つり合い条件式は,以下のように書ける。

 $\sum H = 0$: $H_A + 10 = 0 \ddagger 0$, $H_A = -10 \text{ kN}$

問題 2.4

以下の片持ちはりに作用 する支点反力の値を求めな さい。

$$\sum V = 0 : R_A - 10 = 0 \ \text{\rlap{k}} \ \vartheta, \ R_A = 10 \ \text{kN}$$
$$\sum M_{at\,A} = 0 : M_A + 10 \times 5 + 20 = 0 \ \text{\rlap{k}} \ \vartheta, \ M_A = -70 \ \text{kN} \cdot \text{m}$$
$$\overrightarrow{\text{H} \implies 10} \ \vartheta$$

$$\sum M_{at B} = 0: M_A + R_A \times 10 - 10 \times 5 + 20 = 0 \geq t_a = 0$$

固定モーメント M_A は負であるから、仮定と逆向き(反時計回り)と判 定される。

例題 2.6 集中荷重と等分布荷重を受ける張り出しはり

図 2.14 に示す通り,単純はりの一端または両端を外側に張り出したは りを張り出しはりと呼ぶ。

まず,張り出しはりに作用する支点反力 (R_A , H_A ならびに R_B) は,同 図に示すように正の向きに仮定する。

$$\sum H = 0 : H_A = 0$$

$$\sum V = 0 : R_A + R_B - 20 - 80 = 0 \pm \%, \quad R_A + R_B = 100 \text{ kN}$$

$$\sum M_{at\,A} = 0 : -20 \times 2 + 80 \times 8 - R_B \times 10 = 0 \pm \%,$$

$$R_B = \frac{-20 \times 2 + 80 \times 8}{10} = 60 \text{ kN}$$

 $\sum M_{at B} = 0: -12 \times 20 + R_A \times 10 - 80 \times 2 = 0 \text{ よ } b, R_A = 40 \text{ kN}$ これらの反力の符号は、すべて正である。したがって、反力の向きは、 図 2.14 の仮定通りと判定される。

例題 2.7 集中荷重と等分布荷重を受けるゲルバーはり

式 (e) より, $R_A = 100 - R_B = 100 - 60 = 40 \text{ kN}$

ゲルバーはりとは,連続はりの中間点に新たにヒンジを設けたはりのこ とをいう。図 2.15 の場合,張り出しはり ABG の上に単純はり GC が載っ ていると考え(図 2.16),単純はり,そして,張り出しはりの順で支点反 力を求めていく。

まず, 張り出しはり, 単純はりに作用する支点反力 (*R_A*, *H_A*, *R_B*, *R_C* なら びに *R_G*, *H_G*) は, 図 2.16 に示すように正の向きに仮定する。

図 2.15 集中荷重と等分布荷重を受けるゲルバーはり

問題 2.5

(e)

以下のゲルバーを有する はりに作用する支点反力の 値を求めなさい。

これらの反力の符号は、すべて正である。したがって、反力の向きは、 図 2.16 の仮定通りと判定される。

別解

ヒンジでは,モーメントは伝達されず,この点まわりで考えた<u>右</u>もしく は<u>左</u>のモーメントは常にゼロとなる(図 2.17)。

$$\sum M_{atG}^{\pm} = 0$$
 もしくは $\sum M_{atG}^{\pm} = 0$ この考え方で、同様に、反力計算を行っていく。

 $\sum H = 0$: $H_A = 0$ kN

 $\sum V = 0$: $R_A + R_B + R_C - 120 - 40 = 0$ \downarrow 0, $R_A + R_B + R_C = 160$ kN (h)

 $\sum M_{at A} = 0 : 120 \times 6 - R_B \times 10 + 40 \times 16 - R_C \times 20 = 0 \sharp 0,$

図 2.17 ヒンジG点で左右に分割されたゲルバーはり

 $\sum M_{at\,G}^{\text{fi}} = 0 : 40 \times 4 - R_c \times 8 = 0 \ \text{kN}, \quad R_c = \frac{40 \times 4}{8} = 20 \ \text{kN}$

式 (i) より,
$$R_B = \frac{1360 - 20 \times 20}{10} = 96$$
 kN
式 (h) より, $R_A = 160 - R_B - R_C = 160 - 96 - 20 = 44$ kN

 $\sum M_{atG}^{E} = 0 : R_{A} \times 12 - 120 \times 6 + R_{B} \times 2 = 44 \times 12 - 120 \times 6 + 96 \times 2 = 0$ 上記と同じ解を得ることができる。

例題 2.8 集中荷重を受ける折れはり(静定ラーメン)(図 2.18)

図 2.18 折れはり構造の一例

以下の折れはりに作用す る支点反力の値を求めなさ い。

まず,折れはりに作用する支点反力 (R_A , H_A ならびに R_B) は,図 2.19 に示すように正の向きに仮定する。

そして、つり合い条件式は、以下のように書ける。

$$\sum H = 0 : H_A + 10 = 0 \ \text{k V}, \quad H_A = -10 \text{ kN}$$
$$\sum V = 0 : R_A + R_B = 0$$
(j)

$$\sum M_{atA} = 0$$
 : 10×4- R_B ×5=0 \downarrow b, $R_B = \frac{10×4}{5} = 8$ kN

式 (j) より, $R_A = -R_B = -8$ kN

<検算>

$$\sum M_{at B} = 0: -10 \times 4 + R_A \times 5 - H_A \times 8 = -40 - 40 + 80 = 0$$

水平反力 H_A および鉛直応力 R_A は負であるから仮定と逆向き, R_B の向 きは仮定通りと判定される。

例題 2.9 複数荷重を受けるゲルバーを有する折れはり

まず、折れはりに作用する支点反力 $(H_A, R_A, M_A$ ならびに R_B) は、図 2.20 に示すように正の向きに仮定する。

そして、つり合い条件式は、以下のように書ける。

問題 2.7

以下のゲルバーを有する 折れはりに作用する支点反 力の値を求めなさい。

$$\sum M_{atG}^{\pm} = 0 : R_B \times 5 - 50 - 20 \times 2.5 = 0 \sharp 0,$$

$$R_B = \frac{50 + 20 \times 2.5}{5} = 20 \text{ kN}$$
式 (k) よ 0, $R_A = 40 - R_B = 40 - 20 = 20 \text{ kN}$
式 (\ell) よ 0, $M_A = 331 - R_B \times 10 = 331 - 20 \times 10 = 131 \text{ kN} \cdot \text{m}$
<(検算>

 $\sum M_{atG}^{h} = 0 : 20 \times 2.5 + 27 \times 6 + M_A - H_A \times 9 - R_A \times 5 = 0$ これらの反力の符号は、すべて正である。したがって、反力の向きは、 図 2.20 の仮定通りと判定される。

第3章 断面力の求め方

第2章では、構造物に集中荷重や等分布荷重などの<u>外力</u>が作用した際 に生じる支点反力の求め方について学習した。しかし、外力によって反力 が生じるだけでなく、構造物は変形し、残念ながら目で見ることはできな いが、断面内にも力(=断面力^①〈内力〉と言う)が生じる。この断面力 は、構造物の設計において非常に大切であり^②、本章では、その求め方に ついて説明する。

3.1 断面力とは

いま,図3.1に示すはりを考え,点Aからx離れたところではりを切断 すれば,その面から,断面力が現れる(断面力=切断面において,左右の 物体が及ぼし合っている力という)。

Sectional Force
 例えば、

$$\sigma = \frac{N}{A} \le \sigma_a$$

 σ (シグマ)は、単位面 積あたりに作用する力、A は断面積を示す。鋼やコン クリートなどの建設材料に は、設計上の制限値 σ_a が 設けられている。制限値以 内になるように断面積を決 めるのが設計である。**第3** 章では、分子の断面力に相 当する N の値を求める方 法を勉強する。

③ Normal Force

④ Shearing Force

(5) Bending Moment

6 Free Body

⑦ Free Body Diagram

8

$$\sum H = 0$$
$$\sum V = 0$$
$$\sum M = 0$$

外力は既知であるから, つり合い条件式より,3つ の未知の断面力(*N*,*Q*な らびに*M*)が求められる。 この断面力には、軸方向に押し引きする**軸方向力³**:*N*,部材軸に対し て鉛直方向にずれる変形に抵抗する**せん断力³**:*Q*ならびに物体が回転し たりする変形に抵抗する**曲げモーメント⁵**:*M*の3種類がある。

図 3.1 (b) に示すように、はり全体から取り出した物体を自由物体[®]、 このつり合い状態を表している図を自由物体図[®]という。

はり AB が静止状態を持続するためには、それぞれの自由物体について つり合い条件式[®]を満足する必要がある。これは、外力と断面力(内力) がつり合うことを意味する。

3.2 断面力の符号

いま, 点 A から x 離れた位置ではりを切断した際の断面力を図 3.2 (a), 点 B から x'離れた位置ではりを切断した際の断面力を図 3.2 (b) に, そ れぞれ示す。

はりを切断した際,右側の断面では(図 3.2 (a)),右向きの軸力 N_x , 下向きのせん断力 Q_x ,反時計回りの曲げモーメント M_x が正,一方,左側 の断面(図 3.2 (b))では,左向きの軸力 N_x ,上向きのせん断力 Q_x ,時 計回りの曲げモーメント M_y が正である。

ここで,**正**の定義とは,軸力に対しては,物体を引っ張るように作用す る引張力,せん断力に対しては,右下りにずれを生じさせようとする,曲 げモーメントは,下に凸の曲げを生じさせようとするものである。

3.3 断面力の計算法

例題 3.1 支間中央に集中荷重が載荷された単純はりの断面力図

反力計算

図 3.3 に示す単純はりの支点反力の大きさは、例題 2.1 より、以下の通りになる。

$$H_A = 0, \quad R_A = \frac{P}{2}, \quad R_B = \frac{P}{2}$$

断面力図

1) $0 \le x \le \ell/2 \quad (\mathbf{A} \rightarrow \mathbf{C})$

点 AC 間において, 点 A から x 離れた箇所における自由物体図を図 3.4 に描く[®]。その箇所に正の断面力 N_x , Q_x , M_x を作用させ, つり合い条件に よって, 以下の結果が得られる。

 $\sum H = 0$: $N_x + H_A = 0$ より, $N_x = 0$ AC 間の軸方向力は0

$$\sum V = 0: -Q_x + R_A = 0$$
より、 $Q_x = R_A = \frac{P}{2}$ AC 間のせん断力は $\frac{P}{2}$ の一定値

 ⑨ 荷重の作用位置に着目 して区間分けを行う点 Cに作用する集中荷重 Pは含まない(::点 AC間で切断している ため)。

$$\sum M = 0: -M_x + R_A x = 0 \downarrow 0, \quad M_x = R_A x = \frac{P}{2} x$$

AC 間の曲げモーメントは $\frac{P}{2} x$ の一次式
点 A の曲げモーメントの値は $M_A = 0$
点 C の曲げモーメントの値は $M_c = \frac{P}{2} \cdot \frac{\ell}{2} = \frac{P\ell}{4}$

2) $\ell/2 \leq x \leq \ell \ (C \rightarrow B)$

同じく, 点 CB 間において, 点 A から x 離れた箇所における自由物体図 を図 3.5 に描く。その箇所に正の断面力 N_x, Q_x, M_x を作用させ, つり合い 条件によって, 以下の結果が得られる。

$$\sum H = 0$$
: $N_x + H_A = 0$ より, $N_x = 0$
CB 間の軸方向力は 0

点 C の曲げモーメントの値は
$$M_c = \frac{P\ell}{2} - \frac{P}{2} \cdot \frac{\ell}{2} = \frac{P\ell}{4}$$

問題 3.1

以下の単純はりの断面力 図を描きなさい。

点 B の曲げモーメントの値は
$$M_B = \frac{P\ell}{2} - \frac{P}{2} \cdot \ell = 0$$

以上の結果に基づき,はりの軸線に平行に0を表す基線を引き,断面力の変化の状況を表す断面力図(軸力図,せん断力図,曲げモーメント図) を作図する(図 3.6)。

はりの断面力図を描く際,基線の下側に正の値,上側に負の値を示すの が一般的である。

図 3.6 支間中央に集中荷重が載荷された単純はりの断面力図

反力計算

まず,単純はりに作用する支点反力(*R_A*, *R_B* ならびに *H_A*)は,図3.7に 示すように正の向きに仮定する。

次に、つり合い条件式は、以下のように書ける。

_

$$\sum H = 0: H_A - 10\sqrt{3} = 0 \ \text{\textsterling } \ \text{i}, \quad H_A = 10\sqrt{3} \text{ kN}$$

$$\sum V = 0: R_A + R_B - 10 = 0 \ \text{\textsterling } \ \text{i}, \quad R_A + R_B = 10 \text{ kN} \qquad (a)$$

$$\sum M_{at\,A} = 0: 10 \times 7 - R_B \times 10 = 0 \ \text{\textsterling } \ \text{i}, \quad R_B = \frac{10 \times 7}{10} = 7 \text{ kN}$$

$$\vec{\text{K}} \quad (a) \quad \vec{\text{L}} \ \text{i}, \quad R_A = 10 - R_B = 10 - 7 = 3 \text{ kN}$$

断面力図

1) $0 \le x \le 7 \text{ m} (\mathbf{A} \rightarrow \mathbf{C})$

点 AC 間において, 点 A から x 離れた箇所における自由物体図を図 3.8 に描く。その箇所に正の断面力 N_x, Q_x, M_x を作用させ, つり合い条件に よって, 以下の結果が得られる。

AC 間のせん断力は 3kN の一定値

$$\sum M = 0: -M_x + R_A x = 0$$
より、 $M_x = R_A x = 3x$ kN·m
AC 間の曲げモーメントは 3x kN·m の一次式
点 A の曲げモーメントの値は $M_A = 0$
点 C の曲げモーメントの値は $M_c = 3 \times 7 = 21$ kN·m^①

2) $7 \le x \le 10 \text{ m} (\mathbf{C} \rightarrow \mathbf{B})$

同じく, 点 CB 間において, 点 A から x 離れた箇所における自由物体図 を図 3.9 に描く。その箇所に正の断面力 N_x, Q_x, M_x を作用させ, つり合い 条件によって, 以下の結果が得られる。

図 3.9 点 C から点 B 間で, 点 A から x 離れたところの自由 体図

$$\sum H = 0: N_x + H_A - 10\sqrt{3} = 0 \ \text{L}^{(1)}, \ N_x = 0$$

CB間の軸方向力は0kN

$$\sum V = 0: -Q_x - 10 + R_A = 0$$
より、 $Q_x = -10 + R_A = -10 + 3 = -7$ kN
CB 間のせん断力は -7 kN の一定値

$$\sum M = 0: -M_x - 10(x-7) + R_A x = 0 \downarrow 0,$$

$$M_x = -10(x-7) + R_A x = -10x + 70 + 3x = 70 - 7x \text{ kN} \cdot \text{m}$$

CB 間の曲げモーメントは 70 - 7x kN · m の一次式
点 C の曲げモーメントの値は $M_c = 70 - 7 \times 7 = 21 \text{ kN} \cdot \text{m}$
点 B の曲げモーメントの値は $M_B = 70 - 7 \times 10 = 0$

以上の結果に基づき,断面力図(軸力図,せん断力図,曲げモーメント図)を作図すると図 3.10 の通りになる。

曲げモーメントの単位
 は、力×距離であるた
 め、kN・m などになる。

図 3.11 等分布荷重が載荷された単純はり

反力計算

図 3.11 に示す単純はりの支点反力の大きさは, 例題 2.3 より, 以下の 通りになる。

$$H_A = 0$$
, $R_A = \frac{q\ell}{2}$, $R_B = \frac{q\ell}{2}$

断面力計算

 $\cdot 0 \leq x \leq \ell (\mathbf{A} \rightarrow \mathbf{C})$

点 AB 間において, 点 A から x 離れた箇所における自由物体図を図 3.12 に描く²²。その箇所に正の断面力 N_x, Q_x, M_x を作用させ, つり合い条件に よって, 以下の結果が得られる。

 $\sum H = 0$: $N_r + H_A = 0 \ddagger 0$, $N_r = 0$

AB間の軸方向力は0

$$\sum V = 0: -Q_x - qx + R_A = 0$$
より、 $Q_x = R_A - qx = \frac{q\ell}{2} - qx$
AB 間のせん断力は $\frac{q\ell}{2} - qx$ の一次式
点 A のせん断力の値は $Q_A = \frac{q\ell}{2}$

問題 3.2

集中荷重 (P=50 kN) と等分布荷重 (q=10 kN/ m)が作用した張り出しは りがある。点Aから2m離 れた点Cの曲げモーメン トM_cの値が0(ゼロ)と なるaの長さを求めなさい。

② 分布荷重が載荷された はりの断面力を求める 場合,支点反力を求め るため,つまり,分布 荷重を集中荷重に換算 した以下のモデルで考 えてはいけない。

点 B のせん断力の値は
$$Q_B = \frac{q\ell}{2} - q\ell = -\frac{q\ell}{2}$$

 $\sum M = 0: -M_x - qx \cdot \frac{x}{2} + R_A x = 0$ より, $M_x = R_A x - \frac{q}{2} x^2 = \frac{q\ell}{2} x - \frac{q}{2} x^2$
AB 間の曲げモーメントは $\frac{q\ell}{2} x - \frac{q}{2} x^2$ の二次式
点 A の曲げモーメントの値は $M_A = 0$
点 B の曲げモーメントの値は $M_B = 0$
点 A から $\ell/2$ 離れた箇所の曲げモーメントの値

 $M_{x=\ell/2} = \frac{q\ell}{2} \times \frac{\ell}{2} - \frac{q}{2} \times \left(\frac{\ell}{2}\right)^2 = \frac{q\ell^2}{8}$

以上の結果に基づき,断面力図(軸力図,せん断力図,曲げモーメント図)を作図すると図 3.13 の通りになる。

ここで、構造設計において、各断面力の中でも、曲げモーメントの最大 値が重要になってくる。しかし、この曲げモーメントは、**例題 3.3** のよう に、常に、支間の中央で最大とならず、以下の関係から最大となる箇所を 求める必要がある。

図 3.14 (b) の点 A でモーメントのつり合いを考える。

$$\sum M = 0: -(M_{x} + dM_{x}) - q_{x} \frac{(dx)^{2}}{2} + Q_{x} \cdot dx + M_{x} = 0$$

上式において、(*dx*)²は、高次の微少量であるから、他の項と比較して 無視することができる。以上より、以下の関係式を得ることができる。

$$\frac{dM_x}{dx} = Q_x \tag{3.1}$$

つまり,曲げモーメント M_x を関数xで微分すると,その点のせん断力 Q_x が得られる。

また,図3.14 (b) において,鉛直方向の力のつり合いを考える。

 $\sum V = 0: -(Q_x + dQ_x) - q_x dx + Q_x = 0 \ \text{i} \ \text{i}),$

$$\frac{dQ_x}{dx} = -q_x \tag{3.2}$$

が得られ、つまり、せん断力 Q_x を関数 x で微分すると、その点の荷重 q_x の逆符号となる。

また,式(3.1)より,曲げモーメントの極値を求めることができる。

③ 巻末の付録1にはり の公式を示す。各種載 荷状態に対する支点反 力,断面力」、および たわみを記載している。

④ 集中荷重による曲げ
 モーメントの極値は、
 荷重の作用点、かつ、
 せん断力の符号が逆に
 なる断面で生じる。

問題 3.3

単純はりに等変分布(三 角形)荷重が作用した際, 最大の曲げモーメントが発 生する箇所とその値を求め なさい。

・曲げモーメントとせん断力の関係式(各種詳細は付録 1[®]を参照) $\frac{dM_x}{dx} = Q_x$ 曲げモーメント M_x が極値(最大値,最小値)となる条件は, $\frac{dM_x}{dx} = Q_x = 0$

となる。したがって,はりのせん断力が0(ゼロ)となる箇所では, 曲げモーメントは極大または極小となる³³。

例題 3.4 部分的に等分布荷重が載荷された単純はりの断面力図

反力計算

図 3.15 に示す単純はりの支点反力の大きさは,問題 2.3 より,以下の 通りになる。

 $H_A = 0$, $R_A = 30$ kN, $R_B = 10$ kN

断面力計算

1) $0 \le x \le 4 \text{ m } (\mathbf{A} \rightarrow \mathbf{C})$

点 AC 間において, 点 A から x 離れた箇所における自由物体図を図 3.16 に描く。その箇所に正の断面力 N_x , Q_x , M_x を作用させ, つり合い条件に よって, 以下の結果が得られる。

$$\sum H = 0: N_x + H_A = 0 \ \text{\rlap{k}}\ \text{\rlap{b}}, \quad N_x = 0 \ \text{k}\text{N}$$

$$\sum V = 0: -Q_x - qx + R_A = 0 \ \text{\rlap{k}}\ \text{\rlap{b}}, \quad Q_x = R_A - qx = 30 - 10x \ \text{k}\text{N} \quad (b)^{\text{(b)}}$$

$$\sum M = 0: -M_x - \frac{q}{2}x^2 + R_A x = 0 \ \text{\rlap{k}}\ \text{\rlap{b}}, \quad M_x = 30x - 5x^2 \ \text{k}\text{N} \cdot \text{m} \quad (c)$$

2) $4 \le x \le 8 \text{ m } (\mathbf{C} \rightarrow \mathbf{B})$

同じく, 点 CB 間において, 点 A から x 離れた箇所における自由物体図 を図 3.17 に描く。その箇所に正の断面力 N_n, Q_n, M_r を作用させ、つり合い 条件によって、以下の結果が得られる。

図 3.17 点 C から点 B 間で, 点 A から x 離れたと ころの自由体図

 $\sum H = 0$: $N_x + H_A = 0 \ddagger 0$, $N_x = 0$ kN $\sum V = 0: -Q_x - 40 + R_A = 0 \pm 0$, $Q_x = -10$ kN $\sum M = 0: -M_{x} - 40 \times (x - 2) + R_{A} \times x = 0 \downarrow \emptyset,$ $M_x = 80 - 10x \text{ kN} \cdot \text{m}$

 $\frac{dQ_x}{dx} = -10 = -q$ 上式より,曲げモーメン トおよびせん断力の誘導式 が正しいことを確認するこ とができる。

 $\frac{dM_x}{dM_x} = 30 - 10x = Q_x$

(15)

dx

付録1 はりの公式一覧

載荷状態	せん断力, モーメント図	支点反力、せん断力	曲げモーメント	たわみ	最大たわみ
$A \stackrel{P}{\underbrace{1}_{l} \stackrel{P}{\underbrace{1}_{l$	S []]+]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]	$R_A = R_B = \frac{P}{2}$ $S_1 = S_2 = \frac{P}{2}$	$M_{1} = \frac{Px}{2} \left(0 \le x \le \frac{l}{2} \right)$ $M_{c} = \frac{Pl}{4}$	$y_{1} = \frac{Pl^{3}}{16El} \left(\frac{x}{l} - \frac{4}{3} \cdot \frac{x^{3}}{l^{3}} \right)$ $\left(0 \le x \le \frac{1}{2} \right)$	$y_c = \frac{Pl^3}{48EI}$
$A \stackrel{ }{\stackrel{x_1}{\leftarrow} 1} \frac{P}{l} \stackrel{x_2}{\stackrel{x_1}{\leftarrow} 2} B$	S IIII IIII	$R_A = S_1 = \frac{Pb}{l}$ $R_B = -S_2 = \frac{Pa}{l}$	$M_1 = \frac{Pb}{l} x_1 (0 \le x_1 \le a)$ $M_2 = \frac{Pa}{l} x_2 (0 \le x_2 \le b)$ $M_c = \frac{Pab}{l}$	$y_{1} = \frac{Pa^{2}b^{2}}{6E\pi} \left(2\frac{x_{1}}{a} + \frac{x_{1}}{b} - \frac{x_{1}^{2}}{a^{2}b} \right)$ (0 \le x_{1} \le a) $y_{2} = \frac{Pa^{2}b^{2}}{6E\pi} \left(2\frac{x_{2}}{b} + \frac{x_{2}}{a} - \frac{x_{2}^{3}}{ab^{2}} \right)$ (0 \le x_{2} \le b)	$\begin{aligned} \mathbf{y}_{z} &= \frac{pa^{2}b^{2}}{3EII} \\ \mathbf{y}_{min} &= \frac{Pb\left(I^{2} - b^{2}\right)^{\frac{3}{2}}}{9\sqrt{3EII}} \\ \left(\mathbf{x} &= \sqrt{\frac{I^{2} - b^{2}}{3}}\right) \\ \left(a > b \ \mathcal{O} \succeq \overset{\times}{\Xi}\right) \end{aligned}$
$A \xrightarrow[+a+]{} P \xrightarrow{P} P$	$S = M$ $M = M_1 M_2$	$R_A = R_B = P$ $S_1 = -S_3 = P$ $S_2 = 0$	$ \begin{array}{l} M_1 = P_X, M_2 = P_a \\ M_a = P(1-x) \end{array} $	$y_1 = \frac{Px}{6EI} \left(3a(l-a) - x^2 \right)$ $(0 \le x \le a)$ $y_2 = \frac{Pa}{6EI} \left(3x(l-x) - a^2 \right)$ $(a \le x \le l - a)$	$y_{max} = \frac{Pa}{24EI} \times (3I^2 - 4a^2) \\ \left(x = \frac{l}{2}\right)$
$A \xrightarrow[]{ \leftarrow X \to i} \\ \downarrow \leftarrow l \xrightarrow{ l \to -X \to i} B$		$R_{A} = R_{B} = \frac{ql}{2}$ $S = \frac{ql}{2} \left(1 - \frac{2x}{l}\right)$	$M = \frac{ql^2}{2} \left(\frac{x}{l} - \frac{x^2}{l^2} \right)$ $M_{max} = \frac{ql^2}{8}$	$y = \frac{ql^4}{24EI} \left(\frac{x}{l} - 2\frac{x^3}{l^3} + \frac{x^4}{l^4}\right)$	$y_{max} = \frac{5ql^4}{384EI}$
$A \xrightarrow{S} \begin{array}{c} & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & $	S THE STREET	$R_{A} = q \frac{b\lambda}{l}$ $R_{B} = q \frac{a\lambda}{l}$ $S_{1} = R_{A} (0 \le x \le s)$ $S_{2} = R_{A} - q(x - s)$ $(s \le x \le d)$ $S_{3} = -R_{B} (d \le x \le l)$	$\begin{split} M_1 &= R_A x (0 \le x \le s) \\ M_2 &= R_A x - \frac{q}{2} (x - s)^2 (s \le x \le d) \\ M_3 &= R_B (1 - x) (d \le x \le l) \\ M_C &= q \lambda (\frac{ab}{l} - \frac{\lambda}{8}) \\ M_{max} &= \frac{ab\lambda}{l^2} q (l - \frac{\lambda}{2}) \end{split}$	$y_{1} = \frac{q}{24EI} \left[-4\frac{\lambda}{l} \left(l - s - \frac{\lambda}{2} \right) x^{3} + \left\{ \frac{d^{4}}{l} - 4d^{3} + 4\lambda l(d + s) - \frac{s^{4}}{l} + y_{2} = \frac{q}{24EI} \left[x^{4} - 4 \left(\lambda - \frac{\lambda s}{l} - \frac{\lambda^{2}}{2l} + s + 6s^{2}x^{2} + \left\{ \frac{d^{4}}{l} - 4d^{3} + 4\lambda l(d + s) + 6s^{2}x^{2} + \left\{ \frac{d^{4}}{l} - 4d^{3} + 4\lambda l(d + s) + \frac{s^{2}}{24EI} \right] \left[4\frac{\lambda}{l} \left(s + \frac{\lambda}{2} \right) x^{3} - 12\lambda \left(1 + \frac{1}{l} \left(s + \lambda \right)^{4} + 4\lambda l(d + s) - \frac{s^{4}}{l} \right) \right] \right]$	$\left[x^{3} \\ -\frac{s^{4}}{l} \right] x^{3}$ $\left[-\frac{s^{4}}{l} \right] x + s^{4}$ $\left[s + \frac{\lambda}{2} \right] x^{2}$ $x + s^{4} - d^{4}$
	S III M	$R_A = \frac{ql}{6}$ $R_B = \frac{ql}{3}$ $S = \frac{ql}{6} \left(1 - 3\frac{x^2}{l^2}\right)$	$M = \frac{ql^2}{6} \left(\frac{x}{l} - \frac{x^3}{l^3}\right)$ $M_{max} = \frac{ql^2}{9\sqrt{3}} = 0.06415ql^3$ $\left(x = \frac{l}{\sqrt{3}} = 0.5774l\right)$	$y = \frac{ql^4}{360EI} \times \left(7\frac{x}{l} - 10\frac{x^3}{l^3} + 3\frac{x^5}{l^5}\right)$	$y_{max} = 0.006522 \frac{qt^4}{EI}$ (x = 0.5193l)
$A \stackrel{[+X^*]}{\simeq} \stackrel{M_0}{\longrightarrow} B$	$S \qquad \qquad$	$\begin{split} R_A &= -\frac{M_o}{l} \\ R_B &= \frac{M_o}{l} \\ S &= -\frac{M_o}{l} \end{split}$	$ \begin{split} M_1 &= -\frac{M_0}{l} x \ (0 \leq x \leq a) \\ M_2 &= \frac{M_0}{l} (l-x) \ (a \leq x \leq l) \\ -M_{max} &= -\frac{a}{l} M_0 \ (\not{\pm} \ \textcircled{m}) \\ &+ M_{max} &= \frac{b}{l} M_0 \ (\not{\pm} \ \textcircled{m}) \end{split} $	$y_{1} = \frac{M_{0}x}{6EII}(x^{2} - a^{2} - 2ab + 2b^{2})$ (0 \le x \le a) $y_{2} = \frac{M_{0}(1 - x)}{6EII}(-x^{2} - 2lx - 3a^{2})$	
		$R_{B} = -S = P$	$M = -Px$ $M_{max} = -Pl$	$y = \frac{Pl^3}{6EI} \left(3\frac{x'^2}{l^2} - \frac{x'^3}{l^3}\right)$	$y_A = \frac{Pl^3}{3EI}$
$A \xrightarrow[-a]{P} B$	S	$R_B = -S_2 = P$ $(0 \le x' \le b)$ $S_1 = 0$	$ \begin{array}{l} M_1 = 0 \\ M_2 = - P(b - x') (0 \leq x' \leq b) \\ M_{max} = - Pb\left(\stackrel{\mathrm{Is}}{{\times}} \mathbf{B} \right) \end{array} $	$y_1 = \frac{Pb^3}{6EI} (3\frac{x'}{b} - 1) (b \le x' \le l)$ $y_2 = \frac{Pb^3}{6EI} (3\frac{x'^2}{b^2} - \frac{x'^3}{b^3}) (0 \le x' \le b)$	$y_A = \frac{Pb^2(3l-b)}{6EI}$
$A \stackrel{i \to x \to i \to x' \to i}{\underset{l \to l}{\amalg} I \underset{l \to l}{\overset{l \to x' \to i}{\amalg}} B$	S	$R_B = ql$ $S = -qx$	$M = -\frac{qx^2}{2}$ $M_{max} = -\frac{ql^2}{2} \left(\lim_{n \to \infty} \mathbf{B} \right)$	$y = \frac{ql^4}{24EI} \left(6\frac{{x'}^2}{l^2} - 4\frac{{x'}^3}{l^3} + \frac{{x'}^4}{l^4} \right)$	$y_A = \frac{ql^4}{8EI}$

載荷状態	せん断力, モーメント図	支点反力, せん断力	曲げモーメント	たわみ	最大たわみ
$A \xrightarrow[-a]{} \begin{bmatrix} M_0 \\ 0 \\ 0 \\ 0 \end{bmatrix} B$	S M [[]][]]]	$R_n = 0$ $S = 0$	$M_1 = 0$ $M_2 = -M_0$ $M_{max} = -M_0$	$y_{1} = \frac{M_{0}b}{2EI}(2x'-b) (b \le x' \le l)$ $y_{2} = \frac{M_{0}x'^{2}}{2EI} (0 \le x' \le b)$	$y_A = \frac{M_0 b}{2EI} (2l - b)$
$A \xrightarrow[l]{} \frac{ \overset{-x}{1} }{ \overset{-l}{2} } \frac{P}{l} \xrightarrow[l]{} \frac{2}{2} \\ \overset{-l}{1} \frac{C}{2} \xrightarrow{l} \frac{P}{2} \\ \overset{-l}{1} \frac{C}{2} \xrightarrow{l} \frac{P}{2} \end{bmatrix} B$	S œu±man M œut≑na=1	$R_A = S_1 = \frac{5}{16}P$ $R_B = -S_2 = \frac{11}{16}P$	$M_{1} = \frac{5}{16} Px (0 \le x \le \frac{l}{2})$ $M_{2} = P(\frac{l}{2} - \frac{11}{16}x) (\frac{l}{2} \le x \le l)$ $M_{c} = \frac{5}{32} Pl$ $M_{max} = M_{B} = -\frac{3}{16} Pl$	$y_{1} = \frac{Pl^{3}}{96EI} \left(\frac{3x}{l} - \frac{5x^{3}}{l^{3}}\right)$ $(0 \le x \le \frac{l}{2})$ $y_{2} = \frac{Pl^{3}}{96EI} \left(\frac{11x}{l} - 2\right) \left(1 - \frac{x}{l}\right)^{2}$ $\left(\frac{l}{2} \le x \le l\right)$	$y_{max} = \frac{1}{\sqrt{5}} \frac{Pl^3}{48EI}$ (x = 0.4472l)
$A \xrightarrow[l]{l + l + l} P \\ \downarrow a \downarrow c l + l \\ \downarrow a \downarrow c l \\ \downarrow a \downarrow l $	S []]	$R_A = S_1 = \frac{Pb^2}{2l^3} \times (a+2l)$ $R_B = -S_2 = \frac{P}{2} \left(\frac{3a}{l} - \frac{a^3}{l^3}\right)$	$\begin{split} M_1 &= R_{A^X} \ (0 \le x \le a) \\ M_2 &= R_{A^X} - P(x - a) \ (a \le x \le l) \\ M_B &= -\frac{Pa(l^2 - a^2)}{2l^2} \\ M_C &= \frac{Pa}{2} \left(2 - \frac{3a}{l} + \frac{a^3}{l^3}\right) \end{split}$	$y_{1} = \frac{Pb^{2}x}{12EH^{2}} \left[3al^{2} - (2l+a)x \right]$ $(0 \le x \le a)$ $y_{2} = \frac{Pa(l-x)^{2}}{12EH^{2}} \left[(3l^{2} - a^{2})x - 2a^{2}l \right]$ $(a \le x \le l)$	$y_{c} = \frac{Pb^{3}a^{2}}{12EII^{2}}$ $\times \left(3 + \frac{a}{l}\right)$
$A \xrightarrow[I]{I} I \xrightarrow{I} B$		$R_{A} = \frac{3}{8} ql$ $R_{B} = \frac{5}{8} ql$ $S = ql\left(\frac{3}{8} - \frac{x}{l}\right)$	$M = \frac{qlx}{2}(\frac{3}{4} + \frac{x}{l})$ $-M_{max} = M_B = -\frac{ql^2}{8}$ $+M_{max} = \frac{9}{128}ql^2 \ (x = \frac{3}{8}l)$	$y = \frac{ql^4}{48EI} \left(\frac{x}{l} - 3\frac{x^3}{l^3} + 2\frac{x^4}{l^4}\right)$	$y_{max} = \frac{ql^4}{184.6EI}$ $\left(x = \frac{l}{16}(1 + \sqrt{33}) + 0.4215l\right)$
$A = \begin{bmatrix} x & T & P \\ T & 1 & 2 \\ \hline 1 & 2 & 1 \\ \hline 1 & 2 & 1 \end{bmatrix} B$	S III III III III M English	$R_A = S_1 = \frac{P}{2}$ $R_B = -S_2 = \frac{P}{2}$	$M_{1} = \frac{Pl}{2} \left(\frac{x}{l} - \frac{1}{4}\right)$ $(0 \le x \le \frac{1}{2})$ $M_{A} = M_{B} = -\frac{Pl}{8}$ $M_{C} = \frac{Pl}{8}$	$y_{1} = \frac{Pl^{3}}{16EI} \left(\frac{x^{2}}{l^{2}} - \frac{4x^{3}}{3l^{2}}\right)$ $(0 \le x \le \frac{l}{2})$	$y_{max} = \frac{Pl^3}{192EI}$
$A = \begin{bmatrix} P \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	S Ш±⊒ ^{IIII} ⊐IIII M [™] → _{V±} → II	$\begin{split} R_{\scriptscriptstyle A} &= S_1 = P \frac{b}{l^3} \\ &\times \left(l^2 - a^2 + ab\right) \\ R_{\scriptscriptstyle B} &= -S_2 = P \frac{a}{l^3} \\ &\times \left(l^2 - b^2 + ab\right) \end{split}$	$ \begin{split} M_1 &= R_A x + M_A \ (0 \le x \le a) \\ M_2 &= R_B (l - x) + M_B \ (a \le x \le l) \\ M_A &= -P \frac{ab^2}{l^2} \\ M_C &= 2P \frac{a^2 b^2}{l^2} \\ M_B &= -P \frac{ba^2}{l^2} \end{split} $	$y_{1} = \frac{Pb^{2}x^{2}}{6l^{3}EI}(3al - 3ax - bx)$ $(0 \le x \le a)$ $y_{2} = \frac{Pb^{2}x^{2}}{6l^{3}EI}\left\{\frac{l^{3}(x - a)^{3}}{b^{2}x^{2}} + 3al - 3ax - bx\right\}$ $(a \le x \le l)$	$y_c = \frac{Pa^3b^3}{3EH^3}$
$A \not = \frac{\left \begin{array}{c} -x \\ \hline \\ -b \\ \hline \\ I \end{array} \right }{\left \begin{array}{c} -b \\ \hline \\ I \end{array} \right } B$	S TELLATION M P	$R_{A} = R_{0A} - \frac{M_{A} - M_{B}}{l}$ $R_{B} = R_{0B} - \frac{M_{A} - M_{B}}{l}$ $S = S_{0} - \frac{M_{A} - M_{B}}{l}$	$ \begin{split} M &= M_0 + M_A (\frac{l-x}{l}) + M_B \frac{x}{l} \\ M_A &= -\frac{qa}{12l^2} \bigg[12(b + \frac{a}{2})(1 - b - \frac{a}{2})^2 \\ &- a^2 \bigg\{ 2l - 3(b + \frac{a}{2}) \bigg\} \bigg] \\ M_B &= -\frac{qa}{12l^2} \bigg[12(b + \frac{a}{2})(l - b - \frac{a}{2})^2 \\ &- a^2 \bigg\{ 3(b + \frac{a}{2}) - l \bigg\} \bigg] \end{split} $	注) <i>R</i> ₀ , <i>S</i> ₀ , <i>M</i> ₀ は梁 AB を単純梁と考え たときの反力, せん断力, 曲げモー メントを示す。	
	S JELL MILL	$R_{A} = R_{B} = \frac{ql}{2}$ $S = \frac{ql}{2} \left(1 - 2\frac{x}{l}\right)$	$M = -\frac{ql^2}{2} \left(\frac{1}{6} - \frac{x}{l} + \frac{x^2}{l^2}\right)$ $M_A = M_A = \frac{-ql^2}{12}$ $M_C = \frac{ql^2}{24}$	$y = \frac{ql^4}{24EI} \left(\frac{x^2}{l^2} - 2\frac{x^3}{l^3} + \frac{x^4}{l^4}\right)$	$y_{c} = \frac{ql^{4}}{384EI}$

断面形状	断面積(A)	2 軸(図心を通る) より縁までの距離(y)	断面 2 次モーメント (<i>I</i> _x)
	bh	$y_0 = \frac{h}{2}$	$\frac{bh^3}{12}$
$z \xrightarrow{0} b \xrightarrow{0} b$	$\frac{bh}{2}$	$y_0' = \frac{2}{3}h$ $y_0'' = \frac{1}{3}h$	$\frac{bh^3}{36}$
	$rac{\pi d^2}{4}$	$y_0 = \frac{d}{2}$	$\frac{\pi d^4}{64}$
	$\frac{\pi ab}{4}$	$y_0 = \frac{a}{2}$	$\frac{\pi a^3 b}{64}$
	$\frac{\pi}{4}(d^2-d_1^2)$	$y_0 = \frac{d}{2}$	$rac{\pi}{64}(d^4-d_1^4)$
	bf + wt	$y'_{0} = \frac{th^{2} + f^{2}(b-t)}{2(bf + wt)}$ $y''_{0} = h - y'_{0}$	$\frac{ty_0''^3 + by_0'^3}{3} - \frac{(b-t)(y_0'-f)^3}{3}$
	bh - w(b - t)	$y_0 = \frac{h}{2}$	$\frac{bh^3 - w^3(b-t)}{12}$
$= \underbrace{\begin{bmatrix} \frac{a}{2} & \frac{a}{2} \\ z & c \\ \frac{b}{2} & \frac{b}{2} \end{bmatrix}}_{z & \frac{b}{2} & \frac{b}{2} \\ z & \frac{b}{2} \\ z & \frac{b}{2} & \frac{b}{2} \\ z & $	$\frac{1}{2}(a+b)h$	$y'_{0} = \frac{a+2b}{a+b}\frac{h}{3}$ $y''_{0} = \frac{2a+b}{a+b}\frac{h}{3}$	$\frac{a^2+4ab+b^2}{36(a+b)}h^3$

付録3 表計算ソフトによる任意の1形断面に対する断面2次モーメント算出例

実際の設計で用いられている表計算ソフトにより断面2次モーメントを計算している事例を示す. 表計算ソフトでは、断面形状を入力すると、自動的に中立軸や断面2次モーメントを算出できるよう になっている.

断面諸元								
				$A (mm^2)$	y (mm)	Ay (mm ³)	$Ay^2 (mm^4)$	I (mm ⁴)
	b		h					
1上フランジ	300	х	30	9,000	1,345	12,105,000	16,281,225,000	675,000
	h		b					
1腹板	1,300	x	12	15,600	680	10,608,000	7,213,440,000	2,197,000,000
	b		h					
1下フランジ	300	x	30	9,000	15	135,000	2,025,000	675,000
			$\Sigma A =$	33,600 n	1 nm^2 $\Sigma \text{ Ay} =$	= 22,848,000 mm	$\Sigma (Ay^2+I) =$	25,695,040,000 mm ⁴
			e =	680 n	nm		$\Sigma Ae^2 =$	15,536,640,000 mm ⁴
			yu =	680 n	nm yl =	680 mm	$\Sigma (Ae^2+I) - \Sigma Ae^2 =$	10,158,400,000 mm ⁴

計算の流れとしては、断面最下部を仮の中立軸位置と設定し、各長方形断面の断面積と断面1次 モーメントから中立軸位置(yu, yl)を算出している.その後、式(5.18)を用いて仮定中立軸にお ける断面2次モーメントを算出し、最後に中立軸の位置での補正を行い、最終的な断面2次モーメン トを算出している.

問題解答

第2章

問題 2.1

 $H_A = 0$ kN, $R_A = 14$ kN, $R_B = 6$ kN

問題 2.2

$$H_A = 0, \quad R_A = \frac{5}{6}wa, \quad R_B = \frac{7}{6}wa$$

問題 2.3

 $H_A = 0 \text{ kN}, R_A = 30 \text{ kN}, R_B = 10 \text{ kN}$

問題 2.4

$$H_B = 0$$
, $R_B = \frac{qa}{2}$, $M_B = -\frac{qa^2}{6}$

問題 2.5

 $H_A = 0$ kN, $R_A = 45$ kN, $M_A = -150$ kN · m, $R_B = 15$ kN

問題 2.6

 $H_A = -5$ kN, $R_A = -4$ kN, $R_B = 4$ kN

問題 2.7

 $H_A = -1$ kN, $R_A = -2$ kN, $H_B = -4$ kN, $R_B = 2$ kN

第3章

問題 3.1

問題 3.2

a = 1 m

問題 3.3

曲げモーメントは、点Aから
$$\frac{\ell}{\sqrt{3}}$$
の箇所で
生じ、その大きさは $\frac{9\ell^2}{9\sqrt{3}}$ となる。

問題 3.5

第4章

問題 4.1

問題 4.2

$$R_{a} = \frac{2P1 + P2}{3}$$

$$U1 = -\left(\frac{2P1 + P2}{2}\right)$$

$$S1 = \left(\frac{-5P1 + 5P2}{12}\right)$$

$$L1 = \frac{3P1 + 3P2}{4}$$

第5章

問題 5.1

図心座標 (y₀, z₀) = (29.4 mm, 0 mm)

問題 5.2

 $I_z = 804000 \text{ mm}^4$

問題 5.3

$$\sigma_{1} = \frac{E_{1}}{E_{1}A_{1} + E_{2}A_{2} + E_{3}A_{3}}P$$

$$\sigma_{2} = \frac{E_{2}}{E_{1}A_{1} + E_{2}A_{2} + E_{3}A_{3}}P$$

$$\sigma_{3} = \frac{E_{3}}{E_{1}A_{1} + E_{2}A_{2} + E_{3}A_{3}}P$$

第11章

問題 11.1

 $N_{u0} = 1.24 \times 10^6 \text{ N}$

問題 11.2

 $\sigma'_c = 7.04 \text{ N/mm}^2$ $\sigma'_s = 38.1 \text{ N/mm}^2$ $\sigma_s = 162 \text{ N/mm}^2$

問題 11.3

 $\sigma'_c = 8.32 \text{ N/mm}^2$ $\sigma_s = 117 \text{ N/mm}^2$

問題 11.4

 $M_u = 8.82 \times 10^9$ Nmm

第 12 章

問題 12.1

l/r = 50 : $\sigma_u = 337.7 \text{ N/mm}^2$ l/r = 100 : $\sigma_u = 153.1 \text{ N/mm}^2$

問題 12.2

 $\sigma_u = 307 \text{ N/mm}^2$

問題 12.3

(a) t = 11.3 mm(b) t = 34.4 mm

問題 12.4

 $I_s = 3.16 \times 10^6 \text{ cm}^4$

問題 12.5 $I_{\rm r} = 5.75 \times 10^6 \, {\rm cm}^4$

問題 12.6 $M_P = 13.804 \times 10^6$ N · mm

問題 12.7

 $M_P = 17,172 \times 10^6 \,\mathrm{N} \cdot \mathrm{mm}$

問題 12.8

 $P_u = 9M_P / (2l)$

問題 12.9

 $P_u = 6M_P / l$

問題 12.10

点 C に塑性ヒンジが生じて崩壊する場合: $P_u = 2M_P / l$ 点 C に塑性ヒンジが生じない場合: $P_u = N_Y / 2 + M_P / l$

問題 12.11

 $P_u = 3M_P / (2l)$

問題 12.12

 $P_u = 5M_P / l$

索引

あ

I 形鋼 64
圧縮応力 162, 196
圧縮力 161, 194
異形鉄筋 176
移動荷重 117
インフラ構造物 1
影響線 109
影響線図 111
エネルギー法 121
オイラーの弾性座屈荷重 166
応力度(応力) 2, 59, 174
応力分布 198
帯鉄筋 179
折れはり 20, 43

か

回転角 83 外的安定 142 外的静定 142 外的不安定 142 外的不静定 142 外力 10.23 核 163 重ねはり 140,210 荷重 6 カスティリアノの定理 129 仮想仕事の原理 125 片持ちはり 15,36,85,129 間接荷重 113 完全弹塑性(体)167,178,201 基準圧縮強度(曲線)195 基準耐荷力(曲線)195 基準曲げ圧縮強度(曲線)196 共役はり 98 境界条件 84,161 強軸断面 67 クリープ変形 175

形状係数 203 ケーブル 209 ゲルバーはり 17,41,106 ゲルバーヒンジ 139,210 鋼桁 198 鋼構造 193 剛性 47 合成桁 109,198 降伏応力 201 降伏郡 201 降伏モーメント 202 固定支点 9

さ

細骨材 173 最小仕事の原理 135 細長比パラメータ 167 材料力学 2 座屈 60.161.194 座屈応力 167 座屈荷重 165 残留応力 193 仕事 121 軸力 53.68.122.144 支点反力 9.111 終局ひずみ 187 集中荷重 6,23,81,119,133,149 集中モーメント 8.102 自由物体図 24 上路プレートガーダー 67 初期降伏 202 初期不整 161,195 初期変形 193 真応力 201 図心 61 性能照查型設計 173 静定トラス 144 静定はり 142,205 切断法 55,114 節点法 53

224

セメント 173 全塑性モーメント 202 全体座屈 165, 195 せん断力 24, 73, 81, 124, 145 相反定理 124 粗骨材 173 塑性断面係数 203 塑性ヒンジ 193, 202, 205 塑性崩壊 205

た

耐荷性能 2 耐震性能 2 たわみ 79,110 たわみ角法 145 たわみの微分方程式 79 単位荷重法 125 単純はり 10.24.72.89.113.146 弹性荷重法 77.98 **弹性方程式** 132 短柱 164 単鉄筋矩形はり 182 断面1次モーメント 61 断面2次モーメント 63 断面力 23,107,126 力の三要素5 力のつり合い 5 中立軸 71 長柱 168 つり合い条件式 24 つり合い鉄筋比 190 つり合い破壊 190 鉄筋コンクリート 173 鉄筋比 183 デルタ関数 81 等価応力ブロック法 187 等分布荷重 7,23,81,119,128 等方等質な材料 59 等変分布荷重 8 トラス 47, 111, 127, 143 トレッスル橋脚 52

な

内的安定 143 内的静定 144 内的不安定 144 内的不静定 144 内的不静定次数 144 内力 24

は

配合 173 バイリニアモデル 202 ハウトラス 48 柱 161 ばね支持 137 張り出しはり 16 バリノンの定理 6 反力 23.86 微小変形理論 118 ひずみ 2.60.174 ひずみエネルギー 122 ひずみエネルギー最小の原理 136 ひずみ硬化領域 178,201 引張応力 163,203 微分方程式 77 ピン結合 47 ヒンジ支点 9 複鉄筋矩形はり 183 部材角 146 不静定構造物 141 不静定次数 141 不静定トラス 136,144 不静定はり 85,131,142,207 フックの法則 60,78,121,181 プラットトラス 48 プレストレストコンクリート 173 分布荷重 6,31,99,119 平行弦トラス 48 平面保持の仮定 71,77,182 ベティの相反定理 125 ヘビサイド関数 81 変位法 145 変形の適合条件 142,178

偏心荷重 162 偏心距離 162 崩壊荷重 201 補強鉄筋 176 ポニートラス 49 ボルチモアトラス 51

ま

マクスウェルの相反定理 125 曲げ圧縮破壊 189 曲げ引張破壊 190 曲げモーメント 24,53,80,123,145,162,182,195

や

ヤング係数 60,122,169,175,195

ヤング係数比 182 有効座屈長(有効座屈係数)167 溶接箱形断面 195 横倒れ座屈 195 余力法 131

5

らせん鉄筋 179 ラチス桁 50 ラーメン構造 49,138,155 両端固定はり 149 ローラー支点 9

わ

ワーレントラス 48,129

編著者

大垣 賀津雄(おおがきかづお)(1章,11章) ものつくり大学 技能工芸学部 建設学科 教授 博士(工学) 1961年1月,大阪府生まれ。大阪市立大学工学部土木工学科卒業。大阪市立大学大学院工学 研究科土木工学専攻修了。1986年4月~川崎重工業株式会社勤務。2000年12月長岡技術科 学大学より博士(工学)学位授与。2015年4月~ものつくり大学技能工芸学部建設学科教授。 技術士(建設部門,総合技術監理部門)

著者

大山理(おおやまおさむ)(2章,3章)

大阪工業大学 工学部 都市デザイン工学科 教授 博士(工学)

1973年1月,京都府生まれ。大阪工業大学工学部土木工学科卒業。大阪工業大学大学院工学 研究科土木工学専攻修了,博士(工学)学位授与。2001年4月~片山ストラテック(現:日 本ファブテック)株式会社勤務。2005年4月~大阪工業大学工学部都市デザイン工学科講師, 准教授を経て2016年4月~現職。

石川 敏之(いしかわとしゆき)(8章,10章,12章)

関西大学 環境都市工学部 都市システム工学科 教授 博士(工学)

1973年5月,兵庫県生まれ。近畿大学理工学部土木工学科卒業。大阪大学大学院工学研究科 土木工学専攻修了。2002年9月~駒井鉄工㈱に勤務。2005年9月大阪大学大学院工学研究科 土木工学専攻博士後期課程修了,博士(工学)学位授与。2005年10月~大阪大学大学院工学 研究科特任研究員。2007年8月~名古屋大学大学院環境学研究科助教。2010年4月~京都大 学大学院工学研究科助教。2015年4月~関西大学環境都市工学部准教授を経て2022年4月~ 現職

谷口望(たにぐちのぞむ)(4章,5章,7章)

日本大学 理工学部 交通システム工学科 教授 博士 (工学)

1973年6月,北海道生まれ。早稲田大学理工学部土木工学科卒業。早稲田大学大学院理工学 研究科建設工学専攻修士課程修了。早稲田大学大学院理工学研究科建設工学専攻博士課程修了。 1999年4月~早稲田大学理工学部土木工学科助手。2001年4月~財団法人鉄道総合技術研究 所勤務。2001年7月早稲田大学より博士(工学)学位授与。2008年4月~京都大学工学研究 科社会基盤工学専攻特定助教。2010年4月~財団法人鉄道総合技術研究所勤務。2013年4月 ~前橋工科大学社会環境工学科准教授。2021年4月~現職。技術士(建設部門)

宮下 剛 (みやしたたけし) (6章,9章)」

名古屋工業大学 特任教授 博士 (工学)

1975年8月,埼玉県生まれ。東京大学工学部土木工学科卒業。東京大学工学系研究科社会基 盤学専攻修士課程修了。東京大学工学系研究科社会基盤学専攻博士課程修了。2005年9月東 京大学より博士(工学)学位授与。2005年4月~日本学術振興会特別研究員(DC2, PD)。2006 年4月~長岡技術科大学工学部助教,特任講師,准教授を経て,2024年4月~現職。

基礎から実践 **構造力学**

2024年4月23日	初版第1刷
	編著

社
-2
ŧ)
jp
jp

© 大垣 賀津雄 2024

Printed in Japan

ISBN 978-4-8446-0944-5 C3052

JCOPY <出版者著作権管理機構 委託出版物>

本書の無断複製は著作権法上での例外を除き禁じられて います. 複製される場合は、そのつど事前に出版者著 作権管理機構(電話 03-5244-5088, FAX 03-5244-5089, e-mail:info@jcopy.or.jp)の許諾を得てください.